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Preamble

As in earlierreports,we willcontinueto break our effortintoseven distinctunits:

• Atmospheric CorrectionAlgorithm Development

• Whitecap CorrectionAlgorithm

• In-water Radiance Distribution

• ResidualInstrument Polarization

• Pre-launchAtmospheric CorrectionValidation

• Detached CoccolithAlgorithm and Post-launchStudies

This separationhas been logicalthus far;however, as launch of AM-I approaches,itmust be rec-

ognized thatmany oftheseactivitieswillshiftemphasis from algorithmdevelopment to validation.

For example, the second, third,and fifthbulletswillbecome almost totallyvalidation-focussed

activitiesin the post-launchera,providingthe core of our experimental validationeffort.Work

under the firstbulletwillcontinueintothe post-launchtime frame,but willbe drivenin part by

algorithm deficienciesrevealedas a resultof validationactivities.We willcontinue to use this

format forCY97.
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Abstract

Severalsignificantaccomplishments were made during the presentreportingperiod.

We developed a new method for identifyingthe presence of absorbing

aerosolsand, simultaneously,performing atmospheric correction.The al-

gorithm consistsofoptimizing the match between the top-of-atmosphere

radiancespectrum and the resultofmodels of both the ocean and aerosol

opticalproperties.

We developed an algorithm for providing an accurate computation of the

diffuse transmittance of the atmosphere given an aerosol model. A module

for inclusion into the MODIS atmospheric-correction algorithm was com-

pleted.

We acquired reflectance data for oceanic whitecaps during a cruise on the

RV Ka'imimoana in the Tropical Pacific (ManzaniUo, Mexico to Honolulu,

Hawaii). The reflectance spectrum of whitecaps was found to be similar to

that for breaking waves in the surf zone measured by Frouin, Schwindling

and Deschamps [1996]; however, the drop in augmented reflectance from

670 to 860 nan was not as great, and the magnitude of the augmented

reflectance was significantly less than expected [Gordon and Wang, 1994].

We developed a method for the approximate correction for the effects of

the MODIS polarization sensitivity. The correction, however, requires ad-

equate characterization of the polarization sensitivity of MODIS prior to
launch.
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1. Atmospheric Correction Algorithm Development.

a. Task Objectives:

During CY 1996 there are four objectives under this task:

(i) Complete development of an algorithm module for removing the effects of stratospheric

aerosol and/or cirrus clouds from MODIS imagery over the oceans.

(ii) Conduct research on the effects of strongly absorbing aerosols, and their vertical structure,

on the existing atmospheric correction algorithm. Use the results of this research to develop a

strategy for their removal.

(iii) Develop a detailed model of the diffuse transmittance of the atmosphere and the manner

in which it is influenced by the angular distribution of subsurface upwelling spectral radiance. Add

a module for this to the atmospheric correction algorithm.

(iv) Investigate the effects of ignoring the polarization of the atmospheric light field on the

performance of the proposed atmospheric correction algorithm.

b. Work Accomplished:

(i) This task was placed on hold to free time to accelerate Major Task #4 below in response

to the higher-than-expected MODIS polarization sensitivity in some ocean bands. However, a

paper submitted to Applied Optics describing our work in this area was accepted for publication

(Appendix 2 in the Jan. to June 1996 Semi-Annual Report), and talks with MODIS Science Team

Member B.-C. Gao were initiated to coordinate effort for cirrus cloud removal.

(ii) As demonstrated our last Semi-Annual Report (Jan. to June 1996), strongly absorb-

ing aerosols present a serious problem for atmospheric correction. The nature of the problem is

two fold: (1) in contrast to weakly-absorbing aerosols, when the aerosol is strongly absorbing its

distribution in altitude becomes very important; and (2) the technique of distinguishing aerosol

type through examination of the spectral variation of the radiance in the near infrared, used by

the MODIS atmospheric-correction algorithm, cannot distinguish between weakly-absorbing and

strongly-absorbing aerosols. During this reporting period , we have tested a "spectral matching

algorithm" that, although very slow, is capable of distinguishing between weakly- and strongly-

absorbing aerosols. It is based on combining an atmospheric model with a water-leaving radiance

model for the ocean, and effecting a variation of the relevant parameters until a satisfactory fit to
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the MODIS top-of-atmosphere radiance is achieved. We believe that the algorithm is also capa-

ble of functioning in the same manner when aerosol vertical structure is an additional parameter.

(Note that vertical structure is only important when the aerosol is strongly absorbing.) A report

describing this algorithm is attached as Appendix 1.

(iii)The basiccorrectionalgorithmyieldsthe product of the diffusetransmittancet and the

water-leavingreflectancep_. However, t depends on the angular distributionof p_,.IfPu, were

uniform, twould be easy tocompute, and thisapproximation has alwaysbeen employed in the past.

In a seriesofpapers Morel and Gentili[Moreland Gentili,1991;Morel and Gentili,1993] studied

theoreticallythe bidirectionaleffectsas a functionof the sun-viewinggeometry and the pigment

concentration.Their simulationssuggestthat,although the bidirectionaleffectsnearlycancelin the

estimationof the pigment concentrationusingradiance ratios,p,_can depend significantlyon the

solarand viewing angles.(Our major tasknumber 3,a study ofthe in-waterradiancedistribution,

experimentallyaddressesthisproblem.)

In thisreportingperiod,we completed a study to understand the influenceof bidirectional

effectson the diffusetransmittancet.Through the use ofthe reciprocityprinciple,we were able to

develop a simplifiedmethod of computing t,given the upward radiancedistributionwith direction

justbeneath the sea surface.We showed that the differencebetween t (the correctdiffusetrans-

mittance)and t*(thediffusetransmittancecomputed by assuming the subsurfaceupward radiance

isuniform) istypically _< 4%, and isa relativelyweak functionof the aerosolopticalthickness.

Thus, consideringthe errorlikelyto resultfrom the removal of the aerosolpath radiance,itap-

pears that in the blue t can be replacedby t',except in waters with low pigment concentrations,

e.g., _ 0.5 mg/m 3. A paper describingthiswork has been submitted to Applied Optics,and is

attached here as Appendix 2.

We have written a software module to accuratelycompute the diffusetransmittance,and

produced the requiredlookup tables.This module has been deliveredto R. Evans for integration

intothe atmospheric correctionsoftware.

(iv)This taskwas completed as describedinthe lastSemi-Annual Report (Jan. to June 1996).

c. Data/Analysis/Interpretation: See item b above.

d. Anticipated Future Actions:

(i)We must now implement our strategyforadding the cirruscloudcorrectionintothe existing

atmospheric correctionalgoritb_m.Specificissuesinclude (I) the phase function to be used for
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the cirrusclouds,(2) the detailsof making two passesthrough the correctionalgorithm,and (3)

preparationofthe requiredtables.These issueswillbe addressedduring CY 1997 with the goalof

having a complete implementation ready by the end of CY 1997.

(ii)We willcontinue the study of the "spectralmatching'algorithm with the goal of having

an algorithm ready for implementation by the end of CY 1997. As our work has shown that

a knowledge of the verticaldistributionof the aerosolis critical,ifitis stronglyabsorbing,we

have procured a micro pulse lidar(MPL) system for use at sea on validationcruises,and from

islands(likelyBarbados or the Canary Islands)in the Saharan dust zone,to begin to compile the

climatologyof the verticaldistributionrequiredto adopt candidate distributionsfor use in this

region.

(iii)This taskisnearlycomplete;however, we stillneed to develop a method to include the

effectsof the subsurfaceBRDF forlow-pigment waters in the blue.

(iv) Task completed.

Additional tasks for CY97:

(i)We willinitiatea study to determinetheefficacyofthepresentatmospheric

correctionalgorithmon removal ofthe aerosoleffectfrom the measurement

ofthe fluorescencelineheight(MOD 20).

(2)We willexamine methods for efficientlyincludingearth-curvatureeffects

intothe atmospheric correctionalgorithm [Ding and Gordon, 1994].This

willmost likelybe a modificationof the look-up tablesforthe top-of-the-

atmosphere contributionfrom Rayleigh scattering.

(3) We willexamine the necessityofimplementing our out-of-bandcorrection

[Gordon, 1995]to MODIS.

e. Problems/Corrective Actions:

(i)None.

(ii) None.

(iii) None.

(iv) None.
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(v) None.

f. Publications:

H.R. Gordon, Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,

Journal of Geophysical Research, Atmospheres (Accepted).

H.R. Gordon, T. Zhang, F. He, and K. Ding, Effects of stratospheric aerosols and thin cirrus clouds

on atmospheric correction of ocean color imagery: Simulations, Applied Optics (In press).

H. Yang and H.R. Gordon, Remote sensing of ocean color: Assessment of the water-leaving radiance

bidirectional effects on the atmospheric diffuse transmittance, Applied Optics (Submitted).
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2. Whitecap Correction Algorithm (with K.J. Vo$$).

a. Task Objectives:

As described in earlier reports, a whitecap radiometer system has been built and tested to

provide a database for developing and validating the whitecap correction algorithm, as well as for

providing an estimation of the whitecap contribution to the water-leaving radiance during the post-

launch validation phase. The database includes spectral information as well as variables associated

with the formation and occurrence of whitecaps such as wind speed and air/sea temperature.

b. Work Accomplished:

The basic design, calibration procedure, operation, and data analysis methods for the whitecap

radiometer are described in a paper prepared for submission to the Jour. Atm. Ocean. Tech. and

attached here as Appendix 3.

From 29 March to 18 April 1996 the whitecap radiometer system was deployed on the NOAA

ship RV Malcolm Baldrige on a cruise from Miami to a test location in the Gulf of Mexico, ap-

proximately 70 miles off shore from Cedar Key (Florida) in the Apalachicola Bay. The location

provided relatively warm waters (16°-17°C) with a number of cold fronts moving off the mainland.

These fronts usually lasted a couple of days bringing strong winds (sometimes as high as 18 m/s)

and lowering the air temperature to about 12°C. The occurrence of an unstable atmosphere and

good winds provided an interesting spectral whitewater data set. From 1 to 13 November 1996,

the whitecap radiometer was operated on a cruise from Manzauillo, Mexico to Honolulu, Hawaii.

This cruise provided whitecap data under conditions of steady winds (the trades) of essentially

unlimited duration and fetch. The analysis of these two data sets is provided in a paper prepared

for submission to Jour. Geophys. Res. and attached here as Appendix 4.

c. Data/Analysis/Interpretation

There have been threesignificantresultsfrom our whitecap research:(i) our measurements

confirm the spectralfalloffof the augmented reflectancein the NIR, although the reduction at

865 compared to 670 nm was not as largeas observed in the surfzone [Frouin,Schwindling and

Deschamps, 1996];(2)whitecaps show significantnonlambertian effects,particularlyat largesolar

zenithangles;and (3) the augmented reflectanceof whitecaps appears to be about one-forththat

predictedby recentmodels [Gordon and Wang, 1994; Koepke, 1984].The detailsof these results

are provided in Appendix 4.

d. Anticipated Future Actions:
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As the basic objectivesof thistask have been realized,itis being suspended untilthe val-

idationphase. Karl Moore, the post doctoralassociatedwho was responsiblefor the operation

of the instrument and the data analysis,has accepted a positionat the Scripps Institutionof

Oceanography.

e. Problems/Corrective Actions: None

f. Publications:

K.D. Moore, K.J. Voss,and H.R. Gordon, Whitecaps: Spectralreflectancein the open ocean and

their contributionto water-leavingradiance,Ocean Optics XIII, Halifax,Nova Scotia,October

22-25,1996.

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectralreflectanceof whitecaps: Instrumentation,

calibration,and performance in coastalwaters,Jour. Atmos. Ocean. Tech. (Submitted).

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectralreflectanceof whitecaps: Fractionalcoverage

and the augmented spectralreflectancecontributionto the water-leavingradiance,Jour. Geophys.

Res. (Submitted).
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3. In-water Radiance Distribution (with K.J. Voss).

a. Task Objectives:

The main objective in this task is to obtain upwelling radiance distribution data at sea for

a variety of solar zenith angles to understand how the water-leaving radiance varies with viewing

angle and sun angle.

b. Work accomplished:

We acquired upwelling radiance distribution data with the RADS camera system during a

cruise with Dennis Clark during November. It was very windy during this cruise, but data was

acquired in the configuration expected to be used during validation cruises.

c. Data/Analysis/Interpretation: none

We are currently performing the post-cruise calibrations of this instrument, and will be reduc-

ing the cruise data when this is completed.

d. Anticipated future actions:

We will be completing the calibrations and reducing data acquired during the cruise. We are

also planning on making some minor changes to the instrument to improve its operation at sea.

Finally we will be acquiring more data during another cruise with Dennis Clark this spring.

e. Problems/Corrective actions: None.

f. Publications: None.

9
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4. Residual Instrument Polarization.

a. Task Objectives:

The basic question here is: if the MODIS responds to the state of polarization state of the

incident radiance, given the polarization-sensitivity characteristics of the sensor, how much will this

degrade the performance of the algorithm for atmospheric correction, and how can we correct for

these effects?

b. Work Accomplished:

We have developed a formalism [Gordon, 1988] which provides the framework for removal of

instrumental polarization-sensitivity effects, and a method for approximately correcting for them.

The correction method is presented in a paper submitted for publication in Applied Optics, and

attached as Appendix 5. The main difficulty that we see now in correcting for the polarization-

sensitivity effects is the requirement of an adequate pre-launch characterization of the polarization

sensitivity.

c. Data/Analysis/Interpretation:

See Appendix 5.

d. Anticipated Future Actions:

Although this task is now basically complete (a correction algorithm has been developed),

we still need to prepare a module for including the polarization-sensitivity correction algorithm

in the MODIS atmospheric correction algorithm. Also, as operation of the polarization-sensitivity

correction algorithm requires an adequate pre-launch characterization of the polarization sensitivity,

we will continue to work with MCST and SBRS to insure that proper characterization is realized.

e. Problems/Corrective Actions: None

f. Publications:

H.R. Gordon, T. Du, and T. Zhang, Atmospheric correctionof ocean colorsensors:Analysis ofthe

effectsofresidualinstrument polarizationsensitivity,Applied Optics(Submitted).

I0
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5. Pre-launch Atmospheric Correction Validation (with K.J. Voss).

a. Task Objectives:

The long-term objectives of this task are four-fold:

(i) First, we need to study aerosol optical properties over the ocean in order to verify the

applicability of the aerosol models used in the atmospheric correction algorithm. Effecting this

requires obtaining long-term time series in typical maritime environments. This will be achieved

using a CIMEL sun/sky radiometer that can be operated in a remote environment and send data

back to the laboratory via a satellite link. These are similar the radiometers used by B. Holben in

the AERONET Network. Thus, the first objective is to deploy a CIMEL Automatic Sun Tracking

Photometer in a suitable location for studying the optical properties of aerosols over the ocean.

(ii) Second, we must be able to measure the aerosol optical properties from a ship during

the initialization/calibration/validation cruises. The CIMEL-type instrumentation cannot be used

(due to the motion of the ship) for this purpose. The required instrumentation consists of an all-sky

camera (which can measure the entire sky radiance, with the exception of the solar aureole region)

from a moving ship, an aureole camera (specifically designed for ship use) and a hand-held sun

photometer. We have a suitable sky camera and sun photometer and must construct an aureole

camera. Our objective for this calendar year is (1) to assemble, characterize and calibrate the solar

aureole camera system, (2) to develop data acquisition software, and (3) to test the system.

In the case of strongly-absorbing aerosols, we have shown that knowledge of the aerosol vertical

structure is critical [Gordon, 1996]. Thus, we need to be able to measure the vertical distribution

of aerosols during validation exercises. This can be accomplished with ship-borne LIDAR. We have

to procure a LIDAR system and modify it for ship operation.

(iii) The third objective is to determine how accurately the radiance at the top of the atmo-

sphere can be determined based on measurements of sky radiance and aerosol optical thickness at

the sea surface. This requires a critical examination of the effect of radiative transfer on "vicarious"

calibration exercises.

(iv) The forth objective is to utilize data from other sensors that have achieved orbit (OCTS,

POLDER, MSX), or are expected to achieve orbit (SeaWiFS) prior to the launch of MODIS, to

validate and fine-tune the correction algorithm.

b. Work Accomplished:

11
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(i) During the first part of this period we were operating the CIMEL in it's location in the

Dry Tortugas. In October this instrument was removed for recalibration. At the same time the

AERONET network, run by B. Hobren, decided to upgrade the CIMEL instruments with more

stable interference filters and small hardware changes. We will be reinstalling this instrument when

it is returned from NASA.

(ii) The sky camera system and aureole system was used on three cruises during this pe-

riod. The first cruise we participated in occurred during the NASA TARFOX experiment between

Bermuda and New York. This cruise took place on a cruise liner, and we participated in all three

weeks of the cruise effort. During this time we made measurements with the sky camera (including

polarization), aureole camera system (to measure the sky radiance near the sun), and a hand held

sunphotometer. In general the weather was not as good as expected (a hurricane when through the

area during the cruise) but there were several clear periods during the cruise. The second and third

cruises were with Dennis Clark offof Hawaii (during September and November). In the first of these

cruises we obtained data with all three systems, but in the third Dennis Clarks group provided the

sun photometer data. In addition to participating on the cruises we performed calibrations of all

the systems pre and post cruise. We are currently rewriting the data reduction programs for the

sky radiance distribution system to allow data reduction to take place on the cruise, to speed this

process. In addition this is giving an opportunity to review this process and to perform tests of this

data. We have reduced the aureole data from the first two cruises, and are currently evaluating

this data.

To address the problem of vertical distribution of aerosols we have acquired a Micro Pulse

Lidar from SSEI. This system was delivered at the very end of the period (December 16th), so we

have not had a chance to do anything with the system yet.

(iii) As described in our last Semi-AnnuM Report (Jan. to June 1996), we have completed a

study of the accuracy with which one can compute the radiance at the top of the atmosphere from

sky radiance measurements made at the sea surface. The results suggest that the bulk of the error

is governed by the uncertainty in the sky radiance measurements. Furthermore, it was shown that

the largest error in the radiative transfer process was that due to the use of scalar radiative transfer

theory, and that improvement would require the use of vector theory, and thus, measurement

of the the polarization of the sky radiance. We have started to analyze the use of polarization

measurements at the surface and it appears that when polarization is included in the sky radiance

inversion algorithm, the radiative transfer error can be made very small. Furthermore, we are now

examining the extent to which the full linear polarization of the top-of-atmosphere radiance can

12
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be deduced from surface measurements. This may be very important for validating the pre-launch

polarization-sensitivity characterization of MODIS.

(iv) We have been in contact with personnel involved with SeaWiFS, OCTS, and MSX to

acquire data formats, and satellite data from these instruments to assess the validity of the at-

mospheric correction algorithm. We have procured an SGI R10000 Workstation (same chip set

and operating system as used by MODIS SDST). This will provide the necessary image processing

capability for the pre- and post-launch era.

c. Data/Analysis/Interpretation:

(i) The CIMEL instrument was at NASA for most of this period for recalibration and refitting

of the interference filters. Thus there has been little data analysis.

(ii) We have been working to reduce the data from the sky camera and aureole camera acquired

this period but have not finished this process. Thus there is little to report in terms of analysis or

interpretation. We also do not have any data from the LIDAR yet.

d. Anticipated Future Actions:

(i) We will be reinstalling the CIMEL in the Dry Tortugas at the first opportunity after its

return from NASA. We are also working on a better method of acquiring the data through NASA.

This will enable us to look at the sky radiance data in a more timely manner.

(ii) We will finish the data reduction work with the sky camera system in the next quarter.

We are also reworking portions of this system to allow more automation of the data collection, and

fix minor problems which developed during the last cruise (specifically overheating of the system

computer and corrosion on the computer backplane). The reduced aureole data will be merged

with the sky radiance data to provide a complete sky radiance distribution during this next period.

We will also finish reducing all of the aureole data during this next period.

Much of our effort in the next several months will be spent learning the new MPL Lidar

system, and making the modifications necessary to use the system at sea. We would like to have

this system ready for operation during the next cruise opportunity, if possible ready for a field trial

in February.

(iii) We will continue development of a sky radiance inversion algorithm that utilizes the

full vector radiative transfer equation. This should remove the largest radiative transfer error in

predicting the top-of-atmosphere radiance from the bottom-of-atmosphere radiance.

13
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(iv) We willcontinue to try to obtain ocean color data from other sensors to assessthe

correctionalgorithm.Now, 0CTS appears tobe themost likelycandidate.We willinstallR. Evans'

implementation ofour atmospheric correctionalgorithmon the R10000 computer to facilitatefine-

tuning the algorithm.

e. Problems/corrective actions: None.

f. Publications:

H.R. Gordon and T. Zhang, How well can radiance reflected from the ocean-atmosphere system be

predicted from measurements at the sea surface?, Applied Optics 35, 6527-6543 (1996).

D.K. Clark,H.R. Gordon, K.J.Voss,Y. Ge, W. Broenkow, and C. Trees,ValidationofAtmospheric

Correctionover the Oceans, Jour. Geophys. Res. (Accepted).

K.J. Voss and Y. Liu, Polarized radiance distribution measurements of skylight: Part 1, system

description and characterization, Applied Optics (Submitted).

14
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6. Detached Coccolith Algorithm and Post Launch Studies (W.M. Balch).

During the second half of 1996, we participated in one cruise to the Gulf of Maine, a well known

region for mesoscale coccolithophore blooms. We measured coccolithophore abundance, produc-

tion and optical properties. We also completed a flow cytometer experiment in which we sorted

field-derived calcite particles to measure their calcite specific scattering coefficients. A thorough

understanding of the relationship between calcite abundance and light scatter, in coccolith-rich and

coccolith-poor regions, will provide the basis for a generic suspended calcite algorithm to be used

with MODIS data.

a. Task Objectives:

The algorithm for retrieval of the detached coccolith concentration from the coccolithophorid,

E. huxleyi is described in detail in our ATBD. The key is quantification of the backscattering coeffi-

cient of the detached coccoliths. Our earlier studies focussed on laboratory cultures to understand

factors affecting the calcite-specific backscattering coefficient. As with algorithms for chlorophyll,

and primary productivity, the natural variance between growth related parameters and optical

properties needs to be understood before the accuracy of the algorithm can be determined. To this

end, the objectives of our coccolith studies have been to define the effect of growth rate on:

(1) the rate that coccoliths detach from cells (this is also a function of turbulence

and physical shear);

(2) rates of coccolith production;

(3) morphology of coccoliths; and

(4) volume scattering and backscatter of coccohths.

For perspective on the directions of our work, we provide an overview of our previous activities.

During 1995, we focussed on all of the above objectives using chemotstat cultures (in which algal

growth rate is precisely controlled). During the latter half of 1995, our work focused on shipboard

measurements of suspended calcite and estimates of optical backscattering as validation of the

laboratory measurements. We participated on two month-long cruises to the Arabian sea, measuring

coccolithophore abundance, production, and optical properties. During the first half of 1996, we

focused again on objectives 2 and 4, during two Gulf of Maine cruises, one in March and one in

June. During the second half of 1996, we participated on another cruise to the Gulf of Maine, and

further addressed objectives 2 and 4.

15
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b. Work Accomplished:

We have continued data analysisforthe Arabian Sea cruisesas wellas the firsttwo Gulf of

Maine cruisesof 1996. The currentstateof the data are as follows:

(i)We completed our third cruise of 1996 to the Gulf of Maine in November. During

this cruise, we sampled for total and calcite-dependent backscattering (continu-

ously), suspended calcite concentrations, calcification rates, chlorophyll concen-

trations, and coccolithophore and coccolith counts.

(2)We completed our last set of flow cytometer experiments in which we sorted

field-derived calcite particles into vials of pure seawater, measured their volume

scattering functions, and measured their calcite concentrations.

(3) Suspended calcitesamples from allArabian Sea cruisesand two cruisesto the

Gulf of Maine (March and June) have been run in the graphitefurnace atomic

absorptionspectrometerat the Universityof Maine. We now only have samples

from our most recentcruisein November.

(4) The 400 cell and coccolith counts from the southwest Monsoon cruise (summer

'95) have been completed and the data are being hand-entered into spreadsheets

at this time. We are currently working on the Arabian Sea Samples from the '95

intermonsoon cruise.

(5)All calcification data from the Arabian Sea cruise have been processed to units of

gC m -3 d -1 and integrated over the water column at each station and they have

been processed into complete sections.

(6)The Arabian Sea bioopticaldata isnow processedfortemperature,salinity,pH,

fluorescenceand backscatter(with and without calcite)averaged over each kilo-

meter of alltrips.All calibrationcheckshave been done forthe underway data.

Hydrographic plotshave been made inwhich lightscatteringisplottedas a func-

tionoftemperature and salinityand the opticaland pigment data superimposed.

(7) We have examined the relationship between the calcite-dependent backscattering

(b_) and the concentration of suspended calcite or concentration of detached coc-

coliths for our previous work in the Straits of Florida, Arabian Sea, and North

16
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Atlantic. We have also analyzed these data relevant to our flow cytometer re-

sults. This is of major relevance to our MODIS algorithm efforts. Besides actu-

ally checking our algorithm, it allows us to define the accuracy and precision of

the algorithm. This is exceedingly important for subsequent interpretation. Our

results suggest that for the Gordon reflectance model, the algorithm will have a

precision of 4- 25,000 coccoliths/mL (or in terms of carbon equivalents, ± 5 pg C

as calcite per liter).

c. Data/Analysis/Interpretation:

As expected, calcite-dependent backscattering was low in the Gulf of Maine during March, but

it was still measurable. Typically, calcite scattering accounted for 5-10% of total backscattering.

A very different picture was observed in June. Acid-labile scattering increased to 30-40% of total

backscattering in Wilkinson Basin, a stratified basin in the middle of the Gulf of Maine. Acid-labile

scattering dropped over Georges Bank as the predominant populations were diatoms, and values

increased again in the Northeast Channel, similar to previous blooms that we have observed. The

observations are consistent with the calcite being produced in the more stable Wilkinson Basin

with subsequent advection around the NE flank of Georges Bank. We completed another Gulf of

Maine cruise at the end of October, and again took the flow-through system. Much of these data

are still in the process of being worked-up.

Calcification measurements from the March 1996 cruise were remarkably high, given that this

was at the beginning of the Spring bloom. We were finding _10% of the carbon being fixed into

coccoliths. This also explains the relatively high fraction of calcite-dependent light scattering seen

during this time. Calcification rates are still being processed for the June cruise but preliminary

results suggest that they were quite high.

d. Anticipated Future Actions:

Work in CY97 will address several areas:

(I) Processing of the suspended calcitesamples from the November '96 cruise.

(2) Data will be collated from the Arabian Sea and Gulf of Maine cruises in order

to calculate turnover of the calciteparticles.This can only occur after step I is

completed.

(3) We are continuing analysis of our latestflow cytometer results from the fall '96

experiment. The suspended calcitesamples from that last experiment willbe run.
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(4) The underway data from the Gulf of Maine will be merged with our calibration

measurements (vicarious calibrations axe periodically made at sea and these data

must be processed to verify whether instrument calibrations changed).

(5) Hydrographic plots of the Gulf of Maine data will be made in which light scat-

tering and chlorophyll are plotted in temperature salinity space.

e. Problems/Corrective Actions: None

f. Publications:

W. M. Balch, J. J. Fritz,and E. Fernandez, Decoupling of calcificationand photosynthesisin

the coccolithophoreErnilianiahtudeyiunder steady-statelight-limitedgrowth. Marine Ecology

Progress Series, 142 87-97 (1996).

E. Fernandez,J.J. Fritzand W. M. Balch,Growth-dependent chemical composition ofthe coccol-

ithophoridEmilianiahuxleyiin light-limitedchemostats,J. Exp. Mar. Biol.Ecol. (In press).

J. J. Fritzand W. M. Balch,A coccolithdetachment ratedetermined from chemostat culturesof

the coccolithophoreEmllianiahuxleyi,J. Exp. Mar. Biol.Ecol.(Inpress).

K. J.Voss,W. M. Balch,and K. A. Kilpatrick.Scatteringand attenuationpropertiesofEmiliania

hu.xleyicellsand theirdetached coccoliths,Limnol. Oceanogr. (Submitted).
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8. Other Activities.

The bulk of the PI's effort during this reporting period was focused on five activities. The

first was the preparation of revisions of the Water-leaving Radiance and Coccolith concentration

ATBD's. These revisions were completed and delivered to the EOS Senior Project Scientist on

August 15, 1996. The second was a detailed revision of the MOCEAN Validation Plan on behalf

of the Group. This occurred after attending the MODIS Ocean Group (MOCEAN) Meeting in

July. The third was participation in the MCST audit of progress toward the Level 1B algorithm

in the VIS/NIR bands on September 5, 1996. The forth was participation in the MODIS ATBD

review November 20, 1996. The fifth was an intensive effort to assess the effects of the larger-than-

expected MODIS polarization sensitivity on MODIS products, and to understand the anomalous

polarization-sensitivity characterization tests.
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9. Publications, submissions, and abstracts for CY 96.

H.R. Gordon, Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era,

Journal o] Geophysical Research, Atmospheres (Accepted).

H.R. Gordon, T. Zhang, F. He, and K. Ding, Effectsofstratosphericaerosolsand thin cirrusclouds

on atmospheric correctionof ocean colorimagery: Simulations,Applied Optics(In press).

H.R. Gordon and T. Zhang, How well can radiance reflected from the ocean-atmosphere system be

predicted from measurements at the sea surface?, Applied Optics, 35, 6527-6543 (1996).

T. Zhang and H.R. Gordon, Columnar aerosol properties over oceans by combining surface and

aircraft measurements: sensitivity analysis, Applied Optics (Accepted).

D. K. Clark, H.R. Gordon, K.J. Voss, Y. Ge, W. Broenkow, and C. Trees, Validation of Atmospheric

Correction over the Oceans, Jour. Geophys. Res. (Accepted).

H. Yang and H.R. Gordon, Remote sensing of ocean color: Assessment of the water-leaving radiance

bidirectional effects on the atmospheric diffuse transmittance, Applied Optics (Submitted).

H.R. Gordon, T. Du, and T. Zhang, Atmospheric Correction of Ocean Color Sensors: Analysis of

the Effects of Residual Instrument Polarization Sensitivity, Applied Optics (Submitted).

K.D. Moore, K.J. Voss, and H.R. Gordon, Whitecaps: Spectral reflectance in the open ocean and

their contribution to water-leaving radiance. Ocean Optics XHI, Halifax, Nova Scotia, October

22-25, 1996.

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectral reflectanceof whitecaps: Instrumentation,

calibration,and performance in coastalwaters,Jour. Atmos. Ocean. Tech. (Submitted).

K.D. Moore, K.J. Voss, and H.R. Gordon, Spectral reflectance of whitecaps: Fractional coverage

and the augmented spectral reflectance contribution to the water-leaving radiance, Jour. Geophys.

Res. (Submitted).

K.J. Voss and Y. Liu, Polarizedradiance distributionmeasurements of skylight:Part I, system

descriptionand characterization,Applied Optics(Submitted).

W. M. Balch and K. A. Kilpatrick, Calcification rates in the equatorial Pacific along 140°W, Deep

Sea Research, 43 971-993 (1996).
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Appendix 1

A method for atmospheric correction in the

presence of strongly absorbing aerosols



1. Introduction

The Coastal Zone Color Scanner (CZCS) demonstrated the feasibilityof measuring marine

phytoplankton concentrationsfrom earth-orbitingsensors,tJ Based the successof the CZCS, sev-

eralsimilarinstrumentswith higherradiometricsensitivityand a largernumber ofspectralbands,

e.g.,the sea-viewingwide-field-of-viewsensor(SeaWiFS), 3 the moderate resolutionimaging spec-

troradiometer(MODIS), 4 etc.,willbe launched in the near future.These ocean colorinstruments

willactuallymeasure the chlorophylla concentrationin the water as a surrogatefor the phyto-

plankton concentration.In fact,the CZCS measured the sum ofthe concentrationsof chlorophyll

a and itsdegradationproduct phaeophytin a. This sum was referredto as the pigment concentra-

tion,C. Phytoplankton pigments have a broad absorptionmaximum in the blue (,,_435 urn) and a

broad absorptionminimum in the green (_ 565 nm), and the CZCS algorithmsderivedC from the

ratioof the radiancesbackscatteredout of the water (thewater-leavingradiance,L_,)near these

two wavelengths,s'6Typically,Lw isat most 10% of the totalradiance,Lt, exitingthe top of the

atmosphere (TOA) in the blue and < 5% in the green. Therefore,itisnecessaryto extract Lw

from Lt to deriveC. This processiscalledatmospheric correction.

The atmospheric correctionalgorithmdeveloped forCZCS 6-I°isnot sufficientlyaccurate for

the new generationof sensorswith higherradiometricsensitivity.Atmospheric correctionofthese

sensorsrequiresincorporationofmultiple-scatteringeffects.Gordon and Wang tt't2developed such

an algorithmforSeaWiFS, and found thatthe multiple-scatteringeffectsdepended on the physical

and chemical propertiesof the aerosol(sizedistributionand refractiveindex).Therefore,incorpo-

rationofmultiplescatteringintoatmosphericcorrectionrequiredthe introductionof aerosolmodels

in the algorithm.

The Gordon and Wang algorithmisvery simple to describe.The spectralvariationin Lt in

the near infrared(NIR) spectralregionwhere L_, _ 0 isused to provide informationconcerning

the aerosol,as Lt there isdue principallyto Rayleigh scattering(which isknown) and to aerosol

scattering.The Rayleigh scatteringcomponent isthen removed, and the resultingspectralvariation

iscompared to that produced by a setof candidate aerosolmodels in order to determine which

two models of the candidate set are most appropriate.These models are then used to estimate



the multiple-scattering effects. Gordon 12 has shown that this algorithm can provide L_ with the

desired accuracy as long as the aerosol is weakly absorbing (more accurately, the aerosol must be

weakly absorbing and it must follow the relationship between size distribution and refractive index

that is implicitly implied in the choice of the candidate aerosol models). Unfortunately, strongly-

absorbing aerosols, e.g., aerosols from anthropogenic urban sources or mineral dust transported from

desert areas to the ocean, can possess size distributions similar to the weakly-absorbing aerosols

typically present over the oceans. As the spectral variation of aerosol scattering depends mostly

on the aerosol size distribution, and only weakly on the index of refraction, the spectral variation

of scattering in the _ is not sufficient to distinguish between weakly- and strongly-absorbing

aerosols. Furthermore, in the case of mineral dust an additional complication arises: the dust is

colored, i.e., its absorption is a function of wavelength. 13'14 Even if it were possible to estimate

the absorption characteristics of mineral dust aerosol in the NIR, one would still not know the

extent of absorption in the visible. This is a particularly serious problem, as regions contaminated

by mineral dust are often highly productive and thus important from a biogeochemical point of

view. In fact, dust deposition may actually be providing nutrients that enable the phytoplankton

to bloom. 15

The difficulty in detecting the presence of strongly absorbing aerosols is that the effects of

absorption become evident only in the multiple scattering regime. In the single scattering regime,

the reflectance of the aerosol is proportional to the product of the single scattering albedo (w0)

and the aerosol optical thickness (_'a), i.e., at small _'a there is no way to distinguish nonabsorbing

aerosols (w0 : 1) with a given _'a from absorbing aerosols (w0 < 1) and a larger _',,. Retrieval

of information concerning aerosol absorption requires multiple scattering; however, this multiple

scattering need not be aerosol multiple scattering -- when a low concentration of aerosols exists

in the presence of strong Rayleigh scattering, e.g., in the blue, multiple Rayleigh scattering can

increase the length of photon paths through the aerosol and enhance the chance of absorption. Also,

if distributed vertically in the atmospheric column, the aerosol can reduce the Rayleigh-scattering

component, which is otherwise large in the blue. Thus, the possibility of inferring aerosol absorption

is increased as one progresses from the NIR into the visible, but unfortunately/)w is not known there

(that is why atmospheric correction is required in the first place). The inescapable conclusion is



that the SeaWiFS algorithmllmust fail when the aerosol is strongly absorbing unless the candidate

aerosol models are restricted to those with similarly strong absorption properties. 12 Unless one

could use a global aerosol climatology, i.e., knowledge of the aerosol expected to be present in a

given region and time, to restrict the candidate aerosol models to the appropriate set, an alternate

approach is needed.

In additionto atmospheric correction,thereiscompellinginterestin studying the globaldis-

tributionand transport of aerosolsbecause of theirrolein climate forcingand biogeochemical

cycles.16,17Furthermore, not only isthe aerosolconcentrationrequired,it is alsoimportant to

know theirabsorptionpropertiesto understand theirclimaticeffects.There has been continuing

interestinmeasuring aerosolconcentrationfrom earth-orbitingsensors.Is-2TOver the oceans these

sensorsgenerallyutilizespectralbands forwhich the ocean can be assumed to be black (Lw = 0)

or at leastto have constantreflectance.By analogy to the atmospheric correctionproblem above,

estimationofaerosolabsorptionpropertiesfrom space failsforthesesensors.The one exceptionis

the retrievalofspatialdistributionsofstrongly-absorbingaerosolsusing the Total Ozone Mapping

Spectrometer (TOMS) measurements in the ultraviolet.2s

In thispaper, we describean alternateapproach to the problem of estimatingoceanic bio-

physicalproperties,and aerosolphysical-chemicalproperties,using space-borneocean colorsensors.

The approach isto utilizeallofthe spectralbands of the sensor.This insuressufficientmultiple-

scattering(Rayleighscatteringinthe blue)to enable identificationofaerosolabsorption.In order

to separatethe effectsofaerosolsfrom radiancebackscatteredfrom beneath the sea surface(Lt),an

ocean colormodel, in which the reflectanceisrelatedto the phytoplankton pigment concentration

and the scatteringpropertiesof the phytoplankton and theirassociateddetritalmaterial,isused.

As with the SeaWiFS algorithm,severalcandidateaerosolsmodels are employed: nonabsorbing,

weakly absorbing,and stronglyabsorbing.Through a systematicvariationofthe candidatemodel

aerosols,phytoplankton scattering,C, and 7"_,a "best"fitto simulatedspectralLt data isobtained.

Itisfound that the algorithmcan successfullydiscriminatebetween weakly-and strongly-absorbing

aerosols,and can provide estimatesof C, _'_,and _0 with an accuracy that isnearlyindependent

of w0. For consistencywith earlierwork,12 we specificallyexamine a situationthat would be



encounteredoffthe U.S. East Coast in summer: pollutedcontinentalairtransportedby the winds

to the Middle AtlanticBight. However, thissituationisused only as an example to demonstrate

the approach,we believethatitcould be appliedto ocean regionssubjectedto mineral dust as well

as aerosolresultingfrom biomass burning.

We begin with a discussionofthe approach and the modeling ofthe variousquantitiesrequired

forimplementation. Next, we testthe emcacy of the algorithm using simulated SeaWiFS s data.

RecallSeaWiFS has 8 spectralbands centeredat 412,443,490, 510, 555, 670, 765, and 865 nm.

Finally,we examine the degradation of the performance of the algorithm in the presence of Lt-

measurement error.

2. The algorithm approach and implementation

Neglectinginfluenceof directsun glitterand whitecaps,the totalupweUing reflectanceexit-

ing the top of the atmosphere pt(A)consistsof the followingcomponents:11,12the pure Rayleigh

(molecular)scatteringcontributionp_(A),the pure aerosolscatteringcontributionpa(A),the con-

tributiondue to the interactioneffectbetween airmoleculesand aerosolsp_o(A),and the desired

water-leavingcontributiont(A)p_(A),i.e.,

(1)

where t(A) isthe diffusetransmittanceof the atmosphere. From the satelliteimage, we have the

spectrum of the upweUing reflectancept(A). As p_(A) depends only on the surfaceatmospheric

pressure,9J9 itisnot difficultto remove the pure Rayleigh scatteringcontributionp_(A) from the

totalreflectanceOr(A),

[p,(A)-p,(A)]= [p=(A)+p o(A)]+ (2)

The known reflectancespectrum of [Pt(A)- Pr(A)]consistsof two partswhich are hard to separate,

the water-leavingreflectanceterm t(A)p_(A) and the aerosolcontribution[p_(A)+ p,a(A)](which

includesthe interactionterm between aerosolsand airmolecules).The goalof atmospheric correc-

tionisto retrievethe water-leavingreflectancep_(A) from the known reflectance[pt(A)- p,(A)].
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Because of the high spatial and temporal variability of the physical, chemical, and optical prop-

erties of aerosols, it is difficult to estimate the aerosol contribution [pa(A) 4- p_a(A)] to the total

upwelling reflectance.

The basic assumption of the proposed algorithm is that for each aerosol and pigment con-

centration there is a unique and distinctive spectrum characteristic of its upwelling reflectances

[pa(A) 4- p_(A)I and [t(A)p_(A)]. In a given sun-viewing geometry, similar (or close) spectra

to [pt(A)- p,(A)] can only be obtained from the atmosphere-ocean system by a combination of

aerosolshaving similaropticalpropertiesto the actualaerosol,and a pigment concentrationsimilar

to that actuallypresentin the ocean. That is,when we estimate [t(A)p_,(A)]and [pa(A)+ p,.=(A)]

separatelyand form [p=(A)+ p,a(A)]'and [t(A)p_,(A)]',where here and henceforththe primes will

referto computed or trialestimates,the computed reflectancespectrum

[p,(A)- = + +

willfitthe truereflectancespectrum [pt(A)-pr(A)] inthe visibleand near infraredonly ifboththe

computed water-leavingreflectance[t(A)p_(A)]'and the computed aerosolcontribution[p_(A)+

p_a(A)]'fittheirtrue valuesindividually.In order to implement thisidea, we need to be able

to obtain estimatesof [t(A)p_(A)]'and [pa(A)4.p,_(A)]'.We now describehow the use of this

assumption isaccomplished.

2.A The water component: tpw

The predictionofthe water-leavingreflectance,p_ (A),iserectedusing the semi-empiricalbio-

opticalradiancemodel, developedby Gordon etal.3°forCase i waterss'31,i.e.,watersforwhich the

opticalpropertiesare controlledby the water itselfand by the concentrationofphytoplankton and

theirdecay products.As we use the pigment concentrationC as a surrogateforthe phytoplankton

concentration,one would expect that the absorption and scatteringpropertiesof the particles

would depend only on C; however, itisfound forsuch watersthatfora given C the totalscattering

coefficientvariesby roughly a factorof two.s Thus, a second scattering-relatedparameter b°

which ranges from 0.12 to 0.45m -I with a mean valueof0.30m -I (when C has unitsofmg/m 3)
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Figure 1 Spectrum of normalized water-leaving reflectance [P_()_)]N for pig-
ment concentrations of 0.1, 0.5, and 1.0 mg/m s. For each pigment concen-
tration, from the upper to the lower curves, the values of coefficient b° are

0.45, 0.30, and I).12 m -l, respectively.

is introduced. Gordon et al. 3° found that by using such a model, the water-leaving radiance

dependence on C in Case 1 waters could be explained. Similar results were also obtained by

Bricaud and Morelfl 2 This bio-optical ocean color model actually provides the normalized water-

leaving reflectance, 6'1_ [P_,()0]N, defined by

-- exp[+( /2 +  oz)/cos00],

where r_ and roz are the Rayleigh and Ozone optical thicknesses of the atmosphere, respectively,

and 80 is the solar zenith angle. Sample spectra of [pw(A)]N as a function of C and b° are shown

in Figure 1. Clearly, the normalized water-leaving reflectance is very sensitive to the pigment

concentration C for short wavelengths (412 and 443 nm) and small pigment concentration (C < 0.4

mg/m3). For longer wavelengths (555 and 670 nm) or large pigment concentrations (C _> 0.8

rag/m3), [p,o(A)]N does not depend significantly on the pigment concentration C. It is taken to be

zero at 765 and 865 nm.



It shouldbe noted that the Gordon et a/.S°reflectance model above does not take into ac-

count the bidirectional effects of the sub-surface upwelled spectral radiance, i.e., it assumes that

the upweUing radiance beneath the sea surface is totally diffuse. Morel and co-workers 33-36 have

demonstrated that this is not the case; however, as Morel and Gentili se have shown, bidirectional

effects can be easily introduced into the model and described as a function of C.

Once p_,(A) is determined, it is necessary to propagate it to the top of the atmosphere (TOA).

As mentioned earlier, this is accomplished using the diffuse transmittance t(A). Tanre et al. sT

and Gordon et al. e provided simple expressions for t(A) that include the effects of both aerosol

and Rayleigh scattering. Later, Yang and Gordon 3s provided a detailed analysis of t(A) based on

precise computations. They showed that (1) bidirectional effects play a role in t only in the blue

and only at low C, (2) aerosols play a significant effect on t only if they are strongly absorbing, (3)

t is independent of the aerosol vertical structure even if the aerosol is strongly absorbing, and (4)

given an aerosol model it is simple to predict the correct value of t for any aerosol concentration

and viewing geometry. The value of t can be computed precisely given C (to provide bidirectional

effects), an aerosol model (to provide the aerosol properties), and the aerosol optical thickness ra(A)

(to provide the aerosol concentration). However, for the purposes of this paper, we will approximate

t by assuming it is independent of the aerosol. In this case, t(A) is given by

,(I) =exp +,-o.)/cos0.].

where 0,_ is the angle between the zenith and a line from the sensor to the pixel under consideration.

Thus, the simulated t(A)pw(A) is given by

t(A)p,_()_) = [p_(,_)]Nexp --(r,(,_)/2 + to,) _ + _ . (3)

2.B The aerosol component: p= + p_a

Gordon and Wang ll have shown that the multiple scattering effects in pa + p,a depend sig-

nificantly on the physical and chemical properties of the aerosol, i.e., their size distribution and

refractive index. Thus aerosol models had to be introduced to incorporate multiple scattering effects

8



in atmospheric correction.Similarly,aerosolmodels are alsorequiredto retrieveaerosolproper-

tiesfrom space observations.39'4°Gordon and Wang 11used aerosolmodels that were developed

by Shettleand Ferm 41 for LOWTRAN-64_. These models consistof particlesdistributedin size

accordingto combinations of two log-normaldistributions,and are describedin detailin Ref. 12.

Briefly,fourmodels atfourdifferentrelativehumiditiesareused here. These are the Maritime (M),

the Coastal (C),the Tropospheric (T),and the Urban (U).The relativehumiditiesused are 50%,

70%, 90%, and 99%. We denote a particularmodel by a letterand a number, e.g.,M99 refersto

the Maritime model at 99% relativehumidity.There isan increasingamount of absorptionas one

progressesthrough M,C,T, to U. For example, at 865 nan the aerosolsingle-scatteringalbedo,t#0,is

0.9934,0.9884,and 0.9528,respectively,forthe Maritime, Coastal,and Troposphericmodels (RH

= 80%), while in contrast,_o0= 0.7481 forthe Urban model. Here, the Urban model isintended

to representstronglyabsorbing aerosolsthat might be present over the oceans near areas with

considerableurban pollution,e.g.,the Middle AtlanticBight offthe U.S. East Coast in summer.

We employ these sixteenaerosolmodels as candidatesto testthe algorithm. For a two-layer

atmosphere, with the aerosolconfinedto the bottom layer,the scalarradiativetransferequation

(polarizationignored)was solvedforeach ofthe 16 candidateaerosolmodels (M, C, T, U aerosols

with RH = 50%, 70%, 90%, 99%) with eightvaluesof r_(A) in the range of 0.05 to 0.8 at each

wavelength A,forsolarzenithangle/_0= 0°to 80°inincrementsof2.5°,and for33 differentviewing

zenithangleswith 0,_inthe range of0° to 90°.As itisdifficultto have thislargecomputational set

of valuesof [p_(A)+ p,a(A)]availableforimage processingfor allofthe aerosolcandidates,aerosol

opticalthicknesses,sun-viewinggeometries(/90,_, _b_),and spectralbands;in a manner similarto

the Gordon and Wang algorithm,t2lookup tables(LUTs) are used to provide [p_(A)+ p,o(A)].In

the Gordon and Wang algorithmthe lookup tablesrelated[p_(A)+ p,a(A)] to po,(A),the single

scatteredaerosolreflectance.Equivalently,we relatethe term [pa(A)+p_(A)] tothe aerosoloptical

thicknessr_;our simulatedvaluesof [p_(A)+ p,_(A)]are fitto

(4)

using least-squares.To furtherreducestorage,coefficientsa(A),b(A),c(A)and d(A) were expanded

in Fourier seriesin the azimuth view-angle_b_,and only the Fouriercoefficientswere storedin



the LUTs. Samples of the fit of [p=(A) + p,=(A)] to the aerosol optical thickness are presented in

Figure 2 for a sun-viewing geometry with 00 = 60 °, 8_ _ 46 °, and $_ _ 93 °. This geometry has

relatively large errors in the fits compared to the other geometries used here. It can be seen that

the method of using Eq. (4), and Fourier expanding its coefficients, is appropriate for computing

[p=(A) + p,=(A)] for any candidate aerosol model, at any sun-viewing geometry, aerosol optical

thickness, and wavelength. The largest fitting errors occurred at the largest wavelength (A = 865

nm) and small aerosol optical thickness (r_ _ 0.1). They were of the order of 1% to 2%.
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Figure 2(a) Curve fitsof [p=(A)+ p,=(A)] vs.

r6 for aerosol models of M70, C70, T70 and

U70 at A = 443 nm with 0o = 60.0 ° ,0v =

45.92 ° , and 4,= 93.49 ° .
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Figure 2(b) Curve fitsof [p=(A) + p,=(A)] vs.

*'6 for aerosol models of M70, C70, TT0 and

U70 at A = 865 nm with 0o = 60.0 ° ,0, =

45.92 °, and _b = 93.49 °.

2.C The algorithm implementation

We experimented with severalapproaches forimplementing the algorithm.The one we found

most effectiveissummarized as follows:

First,forthe given sun-viewinggeometry (00,0,,,4,,,),we vary the valueofaerosolopticalthick-

ness at 865 nm, _'a(865),for each candidate aerosolmodel to provide the aerosolcomponent

[p=(A)+ p,=(A)]_.We then vary the pigment concentrationC and the scattering-relatedcoef-

ficientb° to provide the water-leavingreflectance[t(A)p_(A)]'.These yielda trialupwelling

reflectance[p,(A)- p,(A)]'at each of N bands ofthe ocean colorsensor.
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Second, we compute the percent deviation 5' of this simulated spectrum [pt(A)- pr(A)]' from

the measured true spectrum [pt(A)- p_(A)] for each test set (A,r,_,C,b°) ', where A labels

the candidate aerosol model. The percent deviation 5(A, ra, C, b°) ' is defined in the sense of

root-mean-squares,

5(A, r=, C, b°) ' = _ --

N

z p,(A,)]- [p,(A,)-p,(A,)],],N- 1 ,:1 - (5)

Third, we sort the deviations 6(A, v=, C, b°y to find 10 best sets of (A, va, C, b°) ' which yield 10

smallest percent deviations 6(A, r=, C, b°) a.

Fourth, as the correct aerosol model is unlikely to be identical to one of the candidates, we

assume the characteristics of aerosols and pigment concentration can be adequately described

by these 10 best sets of parameters (A, r=, C, b°) a. The retrieved single scattering albedo w_

and optical thickness r_ of the aerosols, and b°_ and the pigment concentration C _ in the ocean

are then computed by averaging w_, r_, b°' and C' over the 10 best sets of (A, r,,, C, b°) '.

3. The algorithm's performance

In this section, we examine the performance of the spectrum-matching algorithm by applying it

to SeaWiFS. s The sun-viewing geometries are taken as those used in Refs. 11 and 12: viewing at the

center of the scan (viewing zenith angle 0v _ 1°) for solar zenith angle 00 = 20 °, 40 ° and 60 °, and

viewing at the edge of the scan (0v _ 45 ° ) near the perpendicular plane for 00 = 0 °, 20 °, 40 ° and 60 °.

These cover much of the the range of sun-viewing geometries available to SeaWiFS. Pseudo data

are provided by solving the scalar radiative transfer equation for a two-layer atmosphere system

with a specified aerosol confined in the lower layer. The pseudo water-leaving reflectance p_(A)

was provided for b° = 0.30 m -1 (the mean value for Case 1 waters) and pigment concentrations

C = 0.1, 0.5, and 1.0 mg/m s.

The algorithm attempts to match the pseudo data spectrum of pc(A) by varying the testing

aerosol model among its 16 candidates (NA = 16), the aerosol optical thickness v=(865) from 0.01
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to 0.40 in increments of 0.01 (N_. = 40), the pigment concentration from 0.05 to 1.50 mg/m s in

increments of 0.05 ms/m s (No = 30), and finally, b ° from 0.12 to 0.45 m -1 in increments of 0.03 m -1

(Nb = 12). The total number of elements in the test set (A,v,_,C,b°) ' is N = NA × N_- x Nc × Nb =

16 × 40 × 30 × 12 = 230400.

For the first test of the algorithm we examined cases in which the aerosol optical properties

of the pseudo atmosphere were included in the candidate aerosol models, i.e., the aerosol optical

properties in the atmosphere system were taken from M70, C70, TT0 and U70. The optical thickness

at 865 nm was taken to be va(865) = 0.1, 0.2 or 0.3. The main purpose of this was to test the

code for implementation of the algorithm. In all cases, for the best set (smallest 5') the correct

aerosol model and the correct values of the parameters were chosen. In fact, 6' for the correct

set was a small fraction of a percent and _ 10 to 30 times smaller than the second best set. The

residual error was due to small errors in the LUTs. Even the averages over the ten best sets were

excellent, providing close values of r_(865), b °, and C. As the aerosol single scattering albedo w0

is a weak function of wavelength A, we use its the retrieved value at 865 nm, _0(865), (averaged

over the ten best sets) as an indication of the algorithm's ability to distinguish between weakly-

and strongly-absorbing aerosols. The derived values of w0(865) showed that weakly and strongly

absorbing aerosols are easily recognized by the algorithm.

As it is not likely for the aerosols in the atmosphere will have exactly the same optical properties

as any one of candidate aerosol models, we tested more realistic cases in which the aerosol models

were similar to, but not the same as, any of the sixteen candidate aerosol models. Following

Gordon 12 the aerosol models M80, C80, TS0 and U80 (Shettle and Fenn models with relative

humidity 80_) were chosen for this purpose. We begin by describing the results obtained from

averaging the parameters from the sets with the ten smallest values of 5'. The averaged w_(865),

r_(865), and C' for a given geometry are taken to be the retrieved values of these parameters.

To estimate the performance on a more global scale, i.e., for all sun-viewing geometries, we then

average over all seven sun-viewing geometries and compute the mean and the standard deviation

in the retrieved parameter values. The mean values of retrieved aerosol single scattering albedo

w_(865) are provided in Table 1 for aerosol models MS0, C80, T80 and US0. It can be seen from
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Table 1 that the retrievedresultsfor _0 are very good for each of four pseudo aerosolmodels.

Large percent deviations(the standard deviationover the seven geometriesdividedby the mean)

in the range of 3% to about 8%, are encounteredfor the stronglyabsorbingU80 aerosolmodel,

neverthelessthe algorithmcan distinguishbetween the weakly absorbingaerosols(M80, C80, T80)

and the stronglyabsorbing aerosol(U80) without difficulty.

Since the ultimate goal of ocean colorremote sensingisto estimate the phytoplankton pig-

ment concentration,we now examine the retrievalof C using the algorithm.Table 2 presentsthe

mean valuesof retrievedC', which are averaged over seven sun-viewinggeometries and alsoover

the four testaerosolmodels, M80, C80, T80, and U80 (28 casesin all).It can be observed that

the retrievedresultsof pigment concentrationare reasonable for allthree testedaerosoloptical

thicknesses[r_(865)= 0.1,0.2,and 0.3]and allthree pigment concentrations[C = 0.I,0.5,and

1.0 mg/mS]. For the small pigment concentration,C = 0.1 mg/m s,or for small aerosoloptical

thickness,ra(865)= 0.1,the spectrum-matching algorithmstillworks very well.With an increase

in eitherpigment concentrationor aerosolconcentration,the percent deviationsand percent er-

rors in the retrievedC ' become larger.For comparison, Table 3 providessimilarresultsfor the

weakly-absorbingaerosolsonly,using the Gordon and Wang correctionalgorithm.12Note that the

presentalgorithmbehaves aswellas the Gordon and Wang algorithm,even when strongly-absorbing

aerosolsare included.Had strongly-absorbingaerosolsbeen includedin Table 3,the resultswould

have been significantlypoorer,e.g.,in some casesitwould have been impossibleto even compute

C because one or both of the requiredp_,'swould likelybe negative.

Detailedretrievalsof the pigment concentrationC are tabulatedin Table 4, which givesper-

centagesof cases with relativeerrorin the retrieval,IAUI/U, lessthan 5%, 10%, 20%, and 30%,

respectively.For the smallestpigment concentration,in allofthe 84 casesexamined (threeaerosol

opticalthicknesses,four aerosolmodels, and seven sun-viewinggeometries),[AC[/U < 20%, and

even < 5% forabout 90% of the cases.For a pigment concentrationof C = 0.5 mg/m 3, and for

small aerosolopticalthickness,%(865) = 0.1,allindividualsimulationshave IAC]/C < 30%, while

for _',(865)= 0.2 thereare about 89% of the caseshaving IACI/C < 30%, and for %(865) = 0.3

about 75% of the caseshaving IACI/C < 30%. At the highest pigment concentrationexamined
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(1.0 n_/m3), for small aerosol optical thickness the algorithm still performs very well with only

one case with [ACI/C > 30%. However, as r,(865) increases, the errors become larger, and about

71% of the cases have [ACI/C < 30% for ra(865) : 0.2, and only about 60% for ra(865) : 0.3.

The algorithm clearly works better in estimating C for smaller pigment concentrations. This is

explained by the relationship between the (normalized) upwelling water-leaving reflectance and the

pigment concentration (see Figures 1 and 2). As we stated in Section 2, the water-leaving reflectance

depends strongly on pigment concentration C when C is small (C _< 0.4 mg/m3). At small C, a

small change in C (0.05 n_/m S in the algorithm) will result in a significant change in the upwelling

water-leaving reflectance. But when pigment concentration is as large as about 1.0 mg/m S, the

upweUing water-leaving reflectance is only a weak function of pigment concentration, and a small

change of 0.05 mg/m S in C is not going to result in any significant change in the upwelling water-

leaving reflectance. This causes the large percent deviation in C when the algorithm is applied to

large pigment concentrations.

Mean values of the retrieved aerosol optical thickness T_(865) over the seven sun-viewing ge-

ometries and four testing aerosol models (M80, C80, TS0 and US0) are presented in Table 5.

The mean values are close to their corresponding "true" aerosol optical thicknesses, the percent

deviations are ranged from about 6% to about 11%.

Figure 3 provides samples of the three best sets (A, 7"a, C, b°) deterndned by the algorithm for

aerosol models of M80, C80, T80 and US0 with r_(865) = 0.2 and C = 0.5 mg/m S, for a single

sun-viewing geometry (80 = 20 °, 0_ = 45.92 °, _ = 90°). As the pseudo aerosol models (M80, C80,

TS0 and US0) are similar to the candidate models used in the algorithm, (M, C, T, and U with RH

= 50%, 70%, 90% and 99%), but are not identical to any of 16 candidates, there is no correct aerosol

model for the algorithm to choose to match the upweUing reflectance [Pa(_)+ p_a(A) + t(A)p_(A)].

The figure shows that the aerosol models which have sindlar optical properties to those of pseudo

aerosol models are selected first by the algorithm. Even though there are some errors caused by

picking the incorrect aerosol models, the pigment concentration chosen by the algorithm is close

to its true value (0.5 rf_/m S in Figure 3). For the four pseudo aerosol models tested, the percent

deviations of the best match for whole spectrum 6(A, r,, C, boy varied from about 0.7% to 1.1%.
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Unlike the case when the test aerosol was one of the candidates, there was no significant increase

in 6' from the best set to the second best set. For the best 10 sets, the largest percent deviation

for C = 0.5 mg/m 3 is about 1.5%.
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Figure 3(a) Reflectance spectrum matching
for aerosol model M80 and pigment concen-
tration C = 0.50 mg/m s with sun-viewing

geometry of 0o = 20.0 ° , 0v = 45.92 °, and
¢ = 90.0 °.

Figure 3(b) Reflectance spectrum matching
for aerosol model C80 and pigment concen-
tration C = 0.50 mg/m 3 with sun-viewing
geometry of 00 = 20.0 ° , 0_ = 45.92 ° , and
@ = 90.0 ° .
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Figure 3(c) Reflectance spectrum matching
for aerosol model T80 and pigment concen-
tration C = 0.50 mg/m 3 with sun-viewing
geometry of 00 = 20.0 ° , 0r = 45.92 ° , and
¢ = 90.0 o.

Figure 3(d) Reflectance spectrum matching

for aerosol model U80 and pigment concen-

tration C = 0.50 mg/m 3 with sun-viewing
geometry of 0o = 20.0 ° , 0r = 45.92 ° , and
¢ = 90.0 ° .

From these tests of the algorithm we conclude that it can detect the presence of strongly

absorbing aerosols successfully. Whenever the optical properties of aerosol in the atmosphere

are the same (or very close) to that of any of the 16 candidate aerosol models employed in the
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algorithm, the retrieved pigment concentration C will be excellent, meeting the requirements of

SeaWiFS and MODIS. If the optical properties of the aerosol in the atmosphere are similar to

that of any candidate aerosol model, the retrieval results for the pigment concentration C will still

be good in the presence of small pigment concentration or small aerosol optical thickness. When

both large aerosol optical thickness [7"G(865) around 0.2 to 0.31 and large pigment concentration

[C around 0.5 to 1.0 mg/m 3] are present in the atmosphere-ocean system, the performance of the

algorithm will be degraded. Still, for the worst scenario examined here, ra(865) = 0.3 and C = 1.0

n_/m s, about 60% of the individual simulations have [ACI/C < 30%.

These simulationssuggestthatthe successofthe algorithmdepends on the appropriatenessof

candidate aerosolmodels and the bio-opticalmodel employed in the algorithm.Although we will

not be ableto know the percenterrorsinthe retrievedaerosolsinglescatteringalbedo w_(865) and

pigment concentrationC _in processinga satelliteimage, we can compute 6(A,ra,C, b°)_over all

bands which are used forocean colorremote sensing.Generally,smallpercent deviationslead to

small percent errors,so thatthe percent deviationsforretrievedw_(865) and C _can alsobe used

to assessthe performance of the algorithm.

4. Further tests

Addition testsofthisalgorithmremain to be completed. As mentioned in SectionI,when the

aerosolisstronglyabsorbing,Pt depends significantlyon the aerosol'sverticaldistribution.In the

simulationspresentedhere,the correctverticaldistributionwas assumed, i.e.,the pseudo data were

createdusing the same verticaldistributionas was assumed forthe candidateaerosolmodels. We

believethatthe verticaldistributioncan be introducedintothe algorithmsimply asnew candidate

aerosolmodels, e.g.,the UT0 model with allof the aerosolin the marine boundary layerand the

UT0 aerosolmodel with the aerosoluniformly mixed in the entireatmosphere, would represent

distinctcandidate aerosolmodels. This hypothesiswillbe tested.Also,we need to examine the

sensitivityof the algorithm to errorsin Pt - P_.
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Table 1: Mean values of retrieved w_(865) for the seven sun-viewing geometries

and each of four aerosol models (MS0, C80, TS0, US0). The standard

deviation divided by the mean is listed in parenthesis.

C: mg/m 3 0.100 0.500 1.000

MS0 T=(865) = 0.100 0.992 (0.43%) 0.996 (0.14%) 0.997 (0.10%)

w0 = 0.993 ra(865) = 0.200 0.995 (0.10%) 0.995 (0.10%) 0.996 (0.05%)

ra(865) = 0.300 0.996 (0.05%) 0.996 (0.06%) 0.996 (0.10%)

C: mg/m _ 0.100 0.500 1.000

C80 r_(865) = 0.100 0.980 (0.97%) 0.972 (1.60%) 0.965 (2.26%)

wo = 0.988 r_(865) = 0.200 0.983 (0.53%) 0.988 (0.31%) 0.989 (0.41%)

v,(865) = 0.300 0.987 (0.25%) 0.987 (0.27%) 0.987 (0.37%)

C: mg/m 3 0.100 0.500 1.000

TS0 v,(865) = 0.100 0.952 (0.78%) 0.935 (0.13%) 0.935 (0.00%)

wo = 0.953 ra(865) = 0.200 0.946 (0.34%) 0.936 (0.44%) 0.940 (1.41%)

r,(865) = 0.300 0.945 (0.31%) 0.934 (0.04%) 0.945 (1.82%)

C: mg/m 3 0.100 0.500 1.000

US0 r_(865) = 0.100 0.793 (4.21%) 0.761 (4.51%) 0.769 (3.36%)

w0 = 0.748 v=(865) = 0.200 0.730 (4.76%) 0.750 (8.25%) 0.712 (7.44%)

r_(865) = 0.300 0.730 (5.14%) 0.784 (2.56%) 0.699 (7.34%)
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Table 2: Mean valuesofretrievedC' forseven sun-viewinggeometries

and four aerosolmodels (M80, C80, T80, U80). The standard

deviationdividedby the mean islistedinparenthesis.

C: mg/m 3 0.I00 0.500 1.000

r.(865) = 0.100 0.I00 (1.90%) 0.528 (7.30%) 1.098 (11.7%)

ra(865) : 0.200 0.I01 (4.56%) 0.547 (15.2%) 0.982 (23.9%)

r_(865) = 0.300 0.I01 (4.42%) 0.612 (24.1%) 0.947 (31.3%)

Table 3: Mean values of retrieved C' for seven sun-viewing geometries

and three aerosol models (M80, C80, TS0). derived using

the Gordon and Wang n algorithm. The standard deviation

divided by the mean is listed in parenthesis.

C: mg/m a 0.10 0.47 0.91

r.(865) = 0.100 0.101 (1.6%) 0.466 (3.4%) 0.912 (9.1%)

r.(865) = 0.200 0.100 (3.1%) 0.470 (4.7%) 0.940 (12.8%)

ro(865) = 0.300 0.098 (5.5%) 0.493 (15.3%) 0.936 (25.3%)
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Table 4: Percentageof retrievedpigmentconcentrationC' within certain

error lhnits for aerosol models of M80, C80, T80, and U80.

AC/C: < 5% < 10% < 20% < 30%

r.(865) = 0.100 96% 100% 100% 100%

C = 0.1 mg/m a r.(865) = 0.200 89% 92% 100% 100%

r.(865) = 0.300 89% 92% 100% 100%

AC/C : < 5% < 10% < 20% < 30%

r_(865)= 0.I00 32% 75% 92% 100%

C = 0.5mg/m 3 ra(865)= 0.200 32% 50% 75% 89%

r.(865) = 0.300 25% 35% 64% 75%

AC/C : < 5% < 10% < 20% < 30%

r.(865)= 0.I00 21% 50% 71% 96%

C = 1.0 mg/m 3 r_(865) = 0.200 28% 39% 57% 71%

ra(865) = 0.300 14% 25% 50% 60%

Table 5: Mean valuesofretrievedr_(865)forseven sun-viewinggeometries

and four aerosolmodels (M80, C80, T80, U80). The standard

deviationdividedby the mean islistedin parenthesis.

C: mg/m a 0.100 0.500 1.000

r.(865) - 0.100 0.102 (8.94%) 0.101 (10.2%) 0.102 (11.6%)

r.(865) = 0.200 0.201 (6.31%) 0.199 (8.53%) 0.199 (8.20%)

ra(865) = 0.300 0.300 (6.22%) 0.294 (8.79%) 0.300 (9.93%)
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Abstract

Two factors influence the diffuse transmittance (t) of water-leaving radiance (L_) to the top

of the atmosphere: the angular distribution of upweUing radiance beneath the sea surface (L,,);

and the concentration and optical properties of aerosols in the atmosphere. We examine these

factors and show (1) that the error in L_ induced by assuming L_ is uniform, i.e., in treating

the subsurface reflectance by the water-body as lambertian, is significant in comparison to the

other errors expected in L_ only at low phytoplankton concentration and then only in the blue

region of the spectrum, (2) that when radiance ratios are used in biophysical algorithms the affect

of the uniform-Lu approximation is even smaller, and (3) the dif_se transmittance is a strong

function of the absorption properties of aerosol in the atmosphere, but is nearly independent of

their vertical distribution. An avenue for introducing accurate computation of the uniform-L_,

dif_se transmittance into atmospheric correction algorithms is presented. In an appendix the

reciprocity principle for a medium in which the refractive index is a continuous function of position

is derived.



1. Introduction

The feasibilityof measuring marine phytoplankton concentrationsfrom earth-orbitingsensors

was demonstrated by the proof-of-conceptCoastalZone Color Scanner (CZCS) t,2mission.Based on

the CZCS experience,severalsimilarinstrumentswith a largernumber of spectralbands and higher

radiometricsensitivityare being prepared forlaunch,e.g.,the sea-viewingwide-field-of-viewsensor

(SeaWiFS), 3 the moderate resolutionimaging spectroradiometer(MODIS), 4 etc. The surrogate

for measurement of the phytoplankton concentrationisthe concentrationof the photosynthetic

pigment chlorophylla within the water (actually,withinthe plants).As chlorophylla has a broad

strongabsorptionin the blue (_ 435 nm) and a minimtun of absorptionin the green (_ 565 nm),

the concentrationwithin the water can be estimated from the solarradiance backscattered out of

the water near these wavelengths,s,6the water-leavingradiance.Unfortunately,the water-leaving

radiance typicallycomprises at most 10% of the totalradianceexitingthe top of the atmosphere

(TOA). Briefly,the radiance exitingthe top of the atmosphere in a spectralband centered at Ai,

Lt(Ai),can be written

= + (t)

where Lother(Ai)representsthe contributionto the radiance from allsources except the water-

leavingradiance propogated to the TOA, L_(Ai). Sources of Loth_r include scatteringof solar

radiationinthe atmosphere, specularreflectionofscatteredand unscatteredradiationfrom the di-

rectsolarbeam by the sea surface,and diffusereflectionfrom oceanicwhitecaps. The atmospheric

correctionalgorithm of Gordon and Wang r'sestimatesLoth_, and removes itfrom the totalra-

diance, thereby obtaining the water-leavingradiance transmitted to the top of the atmosphere,

L_(Ai). The water-leavingradiance at the top of the atmosphere isrelatedto the water-leaving

radiance at the bottom of the atmosphere (usuallyjustcalledthe water-leavingradiance)through

the diffusetransmittance,t(_), i.e.,

where _ isa unitvectordirectedfrom the seasurfaceto the sensor,and L_,(_) isthe water-leaving

radiancejust above the surface.In additionto the attenuationof L_(_) along the path from the
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surfaceto the sensor,the diffusetransmittancealsoaccounts foritsaugmentation by scatteringof

L_(_) intothe direction_v,i.e.,atmospheric scatteringfrom _ to _v.

The water-leavingradiance L_ can assume a range of values.Table I provides valuesof L_

at 443 nm and 550 nm with the sun near the zenithfor a range of pigment concentrations9 (C,

the sum of the concentrationsof chlorophylla and itsdegradation product phaeophytin a) for

Case 1 waters,s i.e.,waters forwhich the opticalpropertiesare controlledby the water itself,the

phytoplankton, and the phytoplankton decay products. The goal of the atmospheric correction

algorithm isthe derivationof Lw from Lt with an uncertaintyof < 5% at 443 nm for very clear

oceanic waters,e.g.,the Sargasso Sea in summer (forwhich C _ 0.03 mg/ma). As t isof order

unity,the residualerrorin L,# (afterremoval of Lothe_ from Lt) should be _< 0.1 mW/cm2/_m

Sr. The Gordon and Wang zalgorithmiscapableof thisperformance at 443 nm. Clearly,at higher

pigment concentrationsthe relativeerrorin L_ at 443 nm willbe higher,e.g.,-,_25% for C -,_1

mg/m a (Table 1).Furthermore, the errorin the removal of Loth,r at 550 nm isabout _ - ¼ that

at 443 nm, I° i.e.,_ 0.03 mW/cm_/_m Sr. Thus, even in the SargassoSea in Summer, the relative

errorin L_ at 550 nm willbe _ 10%.

Table I: Water-leavingradiance at 443 and 550 nm

as a functionofthe pigment concentration.

C L, (443) L (550)
(mg/m 3) (mW/cm  m St)

0.03

0.10

0.47

0.91

1.95-2.20

1.35-1.60

0.40-0.75

0.30-0.50

0.28-0.30

0.28-0.30

0.28-0.40

0.24-0.50

To retrievethe water-leavingradiancefrom L_, we need tocalculatethe dif51setransmittance.

However, as we shallsee,the diffusetransmittanceitselfisa functionofthe water-leavingradiance,

and we generallyneed to know the angular distributionof the water-leavingradiance in order to

calculatethe diffusetransmittance.The angular distributionhas been shown to possesssignificant

bidirectionalstructure;11-1ahowever, in the computation oftithas always been assumed that the
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water-leavingradiance isnearlyuniform (independent ofviewing direction),i.e.,that the deviation

ofthe actualradiance distributionfrom uniform causesonly negligibleerrorin the computation of

t.The main objectiveof thispaper isto evaluatethe validityofthisassumption. As we focus on

sensorswith a spatialresolutionof -..1 km designed forthe open ocean,where the typicalscaleof

variabilityisa few km, we assume that L_ isconstant over the scene.Thus, the adjacency effect

of the atmosphere 14-18isignored. We compare the diffusetransmittancecalculatedwith several

realisticwater leaving radiance distributions,includingone from actual measurements, to that

with a uniform radiance distribution.The resultsrevealthat errorsin the retrievedwater leaving

radiance caused by making the uniform approximation are significantcompared to the error in

Loth_ only in the blue and only at low pigment concentration.We then examine the behavior of t

as a functionof the concentrationand opticalpropertiesofthe aerosolpresentin the atmosphere.

2. Computational procedure

For the purposes of thispaper, we assume the atmosphere is divided into two layers,a

molecular-scatteringlayeron the top and an aerosollayerat the bottom. The ocean surfaceis

assumed to be fiat.

The computation of tisstraigthforward:the radiativetransferequation (RTE) can be solved

forthe radiance exitingthe top of the atmosphere (L_) with the correctupweUing radiance distri-

bution L_(_) incidentjustbeneath the sea surface.Accounting forthe transferof radiance across

the air-waterinterface,

where

T/(_')isthe Fresneltransmittanceof the interfaceforradianceincidentfrom below in the direction

_', and m_ is the refractiveindex of water. _ and _ are relatedby SneU's law. This is the

directapproach to findingt(_).However, ratherthan using thisapproach, we choose to solvethe

reciprocalproblem and use the reciprocityprinciple(Appendix i) to derivet.



In the reciprocal problem the extraterristrial solar beam is incident on the top of the atmo-

sphere. Let F0 be the extraterrestrial solar irradiance, _0 a unit vector in the direction of propaga-

tion of the solar beam, and LR(_) the resulting radiance propagating downward just beneath the

sea surfacein the direction_. Then, itisshown in Appendix I that

t(-_0) = F0[_0.h01T/(_0) . l_'ftiLR(_l_idf_(_)'
(2)

where L,,(-_) isthe upward radiance distributionincidentjustbeneath the sea surfaceforwhich

we want t,_ and _o are relatedby Snell'slaw,and f_aindicatesthe integralisto be evaluatedover

alldownward _. IfLu(_) isuniform, thisbecomes

1 fn ER(_o)t'(-&) = Fol&,_olTl(& ) , I_*_ILR(_)dn(_) = Folio • fiolTt(&), (3)

where ER(_0) isthe downward irradiancejustbeneath the surfaceinthe reciprocialproblem.

The relativeerror in the retrievalof water-leavingradiance caused in making the uniform

radiance approximation is

a_(-_0)_ L_(-_0)-_(-&)
L_(-_0)- L_(-&)

t(-_0)-t'(-_0)
t-_-_o) '

where L_(-&)is computed from L_,(-_o) using t'(-_o). Thus,

(4)

,o ]- [ Ido_ILR(_) 1 d12(_), (5)

For the development of the atmospheric correctionalgorithm,Gordon and Wang carriedout

extensivesimulations(,_33,000) of the reciprocalproblem fora varietyof aerosolmodels, aerosol

opticalthicknesses,and _0's.According toEq. (5),we can use theseexistingsimulationsto compute

the errorforany radiance distribution,L,_(_),without having tocarryout furtherradiativetransfer

simulations.This isthe reasonforusing the reciprocialapproach developed here.

3. Computation of the error in L,_

In ordertocompute the errorinL_,usingEq. (5)we need theradiancebackscatteredtoward the

surfacein the water. Precisecomputation of thisrequirescouplingthe ocean and the atmosphere
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in a multiplescatteringcomputation. However, because the radiance reflectedout of the ocean

is small (reflectance<0.04), the probabilityof photons being reflectedout of the ocean twice

isnegligible.Therefore,the couplingisnot reallyrequiredand the ocean and atmosphere can be

treatedseparately.17To furthersimplifythe computations, we shallnot considermultiplescattering

in the water. Rather, we willemploy the quasi-singlescatteringapproximation Is,19(QSSA) to

provide L_, given the scatteringphase functionfor the medium. For given opticalpropertiesof

the ocean, the QSSA willprovide an upwellingradiance distributionbeneath the surfacethat is

identicalin angular distributionto that produced in singlescattering,and as such, willrepresent

the upper limitto the departureof L,,from a uniform distributionfora givenphase function.The

reasonforthisisthat multiplescatteringwillalwaysproduce a smoother radiancedistributionthan

singlescattering.

We introduce a cartesiancoordinatesystem at the sea surfacewith the z-axispointed in the

downward direction(thesame directionas_ at the surface).In thissystem we describethe direction

of_ by the angle 8 measured from the z-axis,and the azimuth angle¢ measured from the z-axis.If

isdirectedtoward increasingdepth,e < 90°.Thus, the directionofthe solarbeam _ in the water

isspecifiedby 0_ and _b_,and forradiancein the water propagatingupward toward the sea surface,

0 > 90. We take ¢0 -- 0, so photons that are exactlybackscatteredfrom the ocean-atmosphere

system, i.e.,scatteredin the direction-_0, have ¢ --180°.

Considering only the refracteddirectsolarbeam in the water, in the QSSA the upweUing

radiance distributionjustbeneath the sea surfaceisgiven byIs't9

cos0_e(®)
L_,(O, ¢) = C(wo, P)FoT(09) cos---_: _--_ose' (6)

where cos e < 0 and C is a constant depending mostly on the value of the single-scattering albedo

w0, but also weakly on P. P(®) is the scattering phase function of the medium for a scattering

angle ®, given by

cose = cosecos0_,+ sine sine_cos(_,- ¢_).



When diffuseskylight refracted into the water in the direction 4'isconsidered as well, an additional

terIn

C(_o, P)/,._>o/" d(_") c_e;-c°se'P(O)c__sOdf_(_'),

where Ld(_') is the sky radiance transmitted through the air-seainterface,and

cosO = cosecosO' + sinOsinO' cos(¢- ¢'),

must be added to the right-hand-side of Eq. (6).

In general the scattering phase function for the ocean, P(O), willbe a combination of that due

to molecular scattering by the water itself(Rayleigh scattering),PR(®), and that resulting from

scattering by the suspended particles Pp(®), i.e.,

P(e) = b,.PR(e) + bpPp(e)
b,. + bp

where b, and b_, are the Rayleigh and particle scattering coefficients, respectively. In contrast to

forward scattering angles for which Pp(O) >> P_(O), Pp and Pr are comparable for ® _> 80 °, so

Rayleigh scattering plays an important role in the determination of P(®) for ® _> 80 °. This is seen

in Figure 1 which compares P_ with Pp measured by Petzold 2° in San Diego Harbor. Petzold's San

Diego Harbor phase function is often taken in ocean radiative transfer simulations as characteristic

of particles in ocean water. 21-23

The limits for P(O) are PR(®) (bp << b,) and Pj,(O) (bp >> b,). We shall estimate the error

in L= given by Eq. (5) in these two limits. In general, the error will fall between these two limits.

Figure 2 provides the upward in-water radiance distribution L_,(-_) due to the direct solar beam

alone for these two limits for 80 = 40 ° and 60 °. In these figures, _r - 8 = 0 implies photons are

traveling toward the zenith, and for _b = 180 ° (_" - ¢ = 0) and 8 = 8_ the photons are exactly

backscattered. Since photons with 7r - 6 > the critical angle (-,, 48 °) cannot escape the ocean

when the surface is flat, the radiance distributions axe truncated at 7r - 8 = 50 °. Also, they are

normalized to unity at their maximum value. In the Rayleigh scattering limit, an observer looking

into the water with 0 = 0_ would observe maximum radiance for _b = 180 °, i.e., with the sun at the



observer's back. In contrast, in the pure particle limit the maximum would be along _ = O. As we

shallsee,theseradiance distributionslead to differentvaluesforthe diffusetransmittance t.

We have appliedEq. (5)and the QSSA to compute AL_,/L_, the errorin the recoveredwater-

leavingradiance made by assuming that L,_(O,_) isuniform (constant).To compute LR(_) and

ER(_0) in Eq. (5)we assume as in Ref. 7 that the atmosphere can be approximated as two layers

with pure molecularscatteringinthe upper layerand pure aerosolscatteringin the lower layer.We

use the Shettleand Fenn _4Maritime aerosolmodel at 90% relativehumidity (M90) to provide the

aerosolopticalproperties.The solutionofthe reciprocalproblem was obtained using the successive

order-of-scatteringmethod 2s for solvingthe radiativetransferequation. The computations are

provided for aerosolopticalthickness_'a= 0.1 and 0.2,and wavelengths (A) of 443 and 555 nm,

the principalspectralregionsused to estimatethe phytoplankton pigment concentrationfrom L_. s

These valuesfor r_ are typicalof thosein a pure maritime atmosphere._6-2s

We begin by examining sun-viewinggeometry typicalofscanning ocean colorsensors:viewing

in the perpendicular plane (_b= 90°) at the centerof the scan (#v _ 0), and near the scan edge

(gv _ 45°),where 0v = 180°-#, i.e.,#v isthe anglebetween the directionthe radiometer isviewing

and the nadir.The computations are performed for#0 = 0,20°,40°,and 60°,and thus,cover the

sensor'sfullscan as itprogressesalong the orbitwith everincreasingsolarzenithangles.

Figure 3 provides the errorAL_/L,# = (t- t')/t"in assuming that L_, isuniform. In the

case of a pure Rayleigh-scatteringocean (Figures3a and 3b),the ma_drn,,rnerroris < 1% forall

0v and 80. Furthermore, the errordepends only weakly on the wavelength and ra. In contrast,in

the caseofa pure particle-scatteringocean (Figures3c and 3d),errorsas largeas 4% are observed,

along with considerabledependence on wavelength and on r_. The largeerrorsare explained by

the much largerrange of variationin L_,(8,_) for the particle-dominatedocean compared to the

Rayleigh-scatteringocean (Figure2),which increasesthe affectof the L_(-_)/L_(-_) in Eq. (5).

The dependence on A and r_ isexplainedby the factthat as ra increasesor as A decreases,the sky

radiance becomes more diffuse,spreadingLR(_) in Eq. (5)over a largerrange of directions(_).
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Similar resultsare obtained in other sun-viewinggeometries. For example, Figure 4 shows

AL,,/L,# as a functionof the viewing azimuth angle forsituationsin which 8v = 0o. The resulting

errorsare similarto those in Figure 3, although in the case of a Rayleigh-scatteringocean, the

errornear Cv = 0 or 180° (the principalplane)is much greaterthan that near ¢_ = 90° (the

perpendicularplane).As most ocean colorinstrumentsscan closerto the perpendicularplane than

the principalplane,thisisnot consideredimportant. Figure 5 providesthe erroras a function of

the viewing angle in the perpendicularplane.The behavior issimilarto that in Figure 4, although

the errordoes not exceed 4% overthe meaningful range of 89 (0-60°).

We have alsocarriedout computations of AL,_/L,# using actualmeasurements of radiance

distributionsmade by VossIs'29on the R/V New Horizon West of San Diego at 32°40'N and

121°18'W. In thiscase the water itselfcontributed < 1-2% to the totalbackscatteringin the

blue.13The radiance distributionsat 450 and 500 nm are provided in Figure 6 for8o = 60°. Note

the similarityofthese to those forthe particle-dominatedocean (Figures2c and 2d);however, the

total variation (minim,,rn to ma,im,lm) of the measured L,_(8, ¢) is smaller, as would be expected

in the presence of multiple scattering. Figure 7 provides the resulting AL_/L_, as a function of

¢, with 8_ = 80 (Figure 7a) and as a function of 8. in the perpendicular plane (Figure 7b) for 443

and 510 nm. For the 443 nm computations, L_ at 450 nm was used, while for 510 nm, L_ at 500

nm was used. The resulting errors are similar to those provided in Figures 4 and 5. The strikingly

different behavior of the error at the two wavelenghts for 0v = 0 in Figure 7a and for ¢, = 0 and

60 ° in Figure 7b results from differences in the two radiance distributions.

Considering that the goal of atmospheric correction is recovering L_ at 443 nm to within ±5%

in very clear ocean water, we see that the assumption that L_(_, ¢) is uniform can lead to significant

error in L_, in such situations, i.e., errors similar in magnitude to Loth_,., when the phase function

is similar to Petzold's, or when the radiance distribution is similar to that measured on the New

Horizon. However, in more productive waters, or in the green, the error in the recovered L_ induced

by this assumption will usually be small compared to that induced by error in removing Loth_.,

i.e., the error in L_, itself will be considerably more than the error in L_, induced by replacing t by

t'.
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Finally, most algorithms for relating L_ to water constituents involve the use of radiance

ratios, s For algorithms using the ratio L,_(443)/L_(555), e.g., the CZCS phytoplankton pigment

algorithm, Figures 3-5 suggest that the error in this ratio induced by replacing t by t" is _ 2% with

the exception of a very clear ocean (Rayleigh scattering) viewing near _ = 0 with 0v = 00 = 60 °,

for which the error is -,, 3% (Figure 4b).

4. Dependence of t" on atmospheric parameters

As it is clear that usually t can be replaced by t', it is important to understand how this quan-

tity depends on the optical properties of the atmosphere. Assuming that the water-leaving radiance

is totally dif_se and spatially uniform, the work of Tanrfi et al.14 provides an approximation to t':

[- + ,i,o)/ o1.

where _-_ is the aerosol optical thickness, and g is the cosine of the scattering angle averaged over

the aerosol scattering phase function. Similarly, Gordon et al.s approximated t" by

,-(o>:e:,[- +

where _ is the aerosol single scattering albedo, and F is defined by

F = 4_ P.(_) d_,'a_',

where P,(a) isthe aerosolscatteringphase function(normalizedto 4_r)fora scatteringangle a,

cos_,= _.'+ _/(I-_'-)(I-_'_)cos_,',

and p = cos0. These formulasyieldsimilarresultsfor_, = I. Because of the typicallylargeaerosol

forward scattering,i.e.,g -._0.7 and F .,_0.9,the affectofaerosolson t'(0)issignificantlylessthan

on the directtransmittance.In the absense of aerosols,both formulas yieldt_._ exp[-7"_/2cos0].

This approximation can be shown to be exact near the singlescatteringlimit,i.e.,t:(0) _ i -

r_/2 cos0. The quantityt; was used as an approximation to t" inprocessingCZCS imagery,S°i.e.,

ro was set to zero in Eq. (8).
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We used Eq. (3) to compute t'(0)in the absence of aerosols,t:.This isprovided in Figure 8a

at the centersof severalof the SeaWiFS spectralbands. Figure 8b providesthe errorin Eq. (8) for

the spectralband at 412 nm (r,= 0.32).Itisseenthat Eq. (8) overestimatest_.by ,,_1.5%, which

isapproximately the lossinradiance upon transmissionthrough the air-seainterfaceat small solar

zenithangles.

To investigatethe influenceofaerosolson t',we used severalofthe Shettleand Fenn _4 aerosol

models. Specifically,we used theirUrban model at 50% relativehumidity (U50),theirTropospheric

model at 50% relativehumidity (T50),and theirMaritime model at 90% relativehumidity (M90).

M90, T50, and U50 have w_ values at 443 nm of 0.9951,0.9643,and 0.6534,respectively,i.e.,

increasingamounts of absorption.As expected from Eqs. (7) and (8),the variationof t*(B)with

B issimilarto that observed in Figure 8a. Figure 9 provides the dependence of t" on 1"afor each

aerosolmodel at B = 20° and 60° for443 and 555 nm. t* isseen to be a strongfunctionof _G.

Gordon i° has shown that in the caseof a strongly-absorbingaerosol,the quantity Lot_e_ in

Eq. (1) isa sensitivefunctionof the verticaldistributionof the aerosol.This isparticularlytrue

in the blue regionof the spectrum. Thus, itisof interestto understand the influenceof aerosol

verticalstructureon t'. Figure 10 compares t" at 443 nm forthe U50 model (stronglyabsorbing)

computed fora two-layeratmosphere (aerosolsat the bottom) and a one-layeratmosphere in which

the aerosolare uniformly mixed with Rayleigh scatterers.The resultsclearlydemonstrate that t*

isnearly independent of aerosolverticalstructure.

Examination of Figure 9 shows that the errorin replacingt" by t_ istypicallysmall as long

as ra isnot too largeand wo _ I. For example, at ra as high as 0.3 the errorin t" at 8 = 20° is

only -_2 - 3% for the M90 model, which isexpected to be realisticovermuch of the open ocean.

Furthermore, the errorin t"has the same signatboth wavelengths,so the errorinduced inradiance

ratioswillbe even smaller.As _'a= 0.3would be largeforsuch areas,_s-2sthisapproximation should

be excellentformost oceanicareas.In contrast,forU50 the errorunder the same conditionswillbe

as high as _ 15%, but the errorin radianceratioswillstillbe small.These resutssuggest that the

approximation t° = t_.willprobably be acceptable(consideringthe expected errorin Lothe,) ifthe

algorithms thatuse L_'s are in the form ofradianceratios,as in the caseof CZCS. For algorithms
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using L_'s in other ways, the error can be excessive unless the aerosol is included in the t" estimate.

Fortunately, the computation of t" is simple given the aerosol model. Recall that the Gordon and

Wang 7 algorithm utilizes that variation of Lothe,. in the near infrared (NIR) to select an aerosol

model, from a set of candidate models, for estimating Lothe,. in the visible. Once an aerosol model

is chosen, Loth_,. in the NIR can be used to estimate co at all wavelengths. An aerosol model and

r_ are all that are needed to accurately compute t'. Given the fact that t* depends exponentially

on r_ (Figure 9), i.e., t'(0) _ A((7) exp[-B(0)r_], for a given 0 only two parameters are needed to

compute t'. To effect the removal of Lotted, a set of lookup tables (LUTs) have been prepared that

relate Lothe,. to _'a for each candidate aerosol model, sun-viewing geometry, and wavelength, by

solving the radiative transfer equation (R.TE) for a two-layer atmosphere (aerosols on the bottom).

These existing solutions to the RTE can be used with Eq. (3) to compute the required t', since

t* does not depend on the vertical structure of the aerosol (Figure 10). As the Lot_,e_ LUTs have

been prepared for (70 = 0(2.50)80 °, i.e., 33 values of (70, LUTs relating t" to r_ with the same

resolution require only 66 constants for each wavelength and candidate aerosol model of interest.

In contrast, the LUTs for Lot_,_ require ,,, 35,000 constants per aerosol model per wavelength.

Thus, computation of a precise value of t'((7) appropriate to a given candidate aerosol model is not

a challenge.

5. Concluding remarks

In this paper we have examined the effects of factors influencing the diffuse transmittance

of the water-leaving radiance to the top of the atmosphere: the angular distribution of upweUing

radiance beneath the sea surface; and the concentration and optical properties of the aerosol in the

atmosphere. Several conclusions are possible based on the analysis.

First, the error in L_, made by assuming that L,, is uniform is <_ 4% for viewing geometries

typical of ocean color observations, and aerosol optical thicknesses typical of the open-ocean marine

atmosphere. As the error in retrieving L_ from Lt will usually exceed 4% by a considerable amount,

the departure of L_ from uniform usually can be ignored. An exception is for low values of C in

the blue where L_, is large and its removal from Lt can be expected to be in error by _< 5%.

Thus, for atmospheric correction over clear water in the blue, it will be necessary to esitmate the
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angular distributionof L_,in the computation of tin order to insurethat the errorin L_ remains

< 5%. This can be accomplished using an estimate of C, obtained with t',in an iterativemanner

as suggestedby Morel and Gentili.3tIn contrast,forsensorsthat are capableof viewing over a large

range ofazimuth angles,e.g.,the polarizationand directionalityof earthreflectance(POLDER) 3_

instrument,the umform-L_, assumption can leadto errorsof more than 6% in L_ (Figure 4b) and

ishighlydependent on the viewing azimuth relativeto the sun.

Next, when biophysicalproducts,e.g.,C, are derivedfrom ratiosof L_ at two wavelengths,

the effectofreplacingt by t"issignificantlysmallerthan the effecton Lw.

Finally,in the absence of aerosols,t* can be computed from simple formulas with an, easily

correctable(Figure 8b), errorof _ 2%. In the presence of aerosols,t" is a strong function of

the aerosolabsorption (Figure 9) but isindependent of the aerosolverticaldistribution(Figure

10).Given thatthe atmospheric correctionalgorithmzprovidescandidateaerosolmodels, accurate

computation of t" can be made using the models choosen to remove Lothe_.

14



6. Appendix: The reciprocity principle

As we were unable to find the result in the literature, we provide here a derivation of the

reciprocity principle for a medium in which the refractive index m is a function of position. We

then apply this to derive Eq. (2) in the text.

In the absence of internal sources, with such a medium occupying a volume V and illuminated

from the outside, the radiance L(1, _) along a ray is governed by the radiative transfer equation

(aTE),

Lm,(t) j = + -+., m,(e)

where _ is a umit vector tangent to the path of the ray, and l is measured along the ray. In this

equation, _(1; _' ---, _) is the volume scattering function for scattering from _' to _, c(1) is the

beam attenuation coefficient of the medium, and dfl(_') is a differential of sond angle around _'. To

derive the reciprocity principle, we imagine a given medium with two different radiance distributions

incident on a volume V from the outside. We index the solution to these two problems by the indices

1 and 2. Thus, for problem 1, we have

d [L,(l,_)] = -c(l) L'(l'_) + [ _(l;_'-_ _)L'(t'_') da($'), (tO)

with a similar equation for problem 2. Now in problem 2, we reverse the sign of _ everywhere, i.e.,

m'(e) J-- + Z(e;

where the minus sign on the left-hand-side is introduced so that the direction of increasing 1 is in

the direction -t-_ in both problems 1 and 2. The integral term in Eq. (11) can be rearranged in the

following manner: first, since the direction _' is an integration variable, it can be replaced by -_

everywhere in the integral; next, we recall that 8(1;-$' _ -_) = j3(t; _ ---, _'); and finally, we note

that df_(-_') -- d_(_'). Thus, the integral term in (11)can be written

L,Ct,-d') dace').
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Now, multiply Eq. (10) by L2(l,-g)/"`2(1),and Zq. (11) by L1(l,g)/"`2(1),and subtract.

Then multiplythe resultby m2(1) dl2(g)dV and integrateover alln(g) and over V. The left-hand-

sideof the resultis

and the right-hand-side is

Lt(t,g') L,(t,-g) di2((.')

--, g,)L,(t, _) L,(t,-g,) anC).- fv ,v/ an(g)"`,(_)f ,(t;(

Clearly, the terms on the right-hand-side add to zero, and

Lr_'(t) -,'It) J aV = 0

Now, we write dV = an(g) at, where an(g) is a differential of area with normal in the direction of

g. Then using the factthat m'(l)dA(g)dfl(g)isconstant along the path ofthe ray,a3

or

[ ]"
. m'-(t) t,

where It isthe beginning of the path in V (thepositionwhere the ray entersV) and g, isthe end

of the path (thepositionwhere the ray exitsV). Iffiisthe outward normal to the surfaceof V,

then dA(g) at gt or g, isg •/_dS, where dS isthe associateddifferentialelement of area on the

surfaceof V, and thisequation becomes

fs aS[ .<, an(f) = o, (t2)
t Lt (_, g)L,()g,

"`,(p-),/4

with/Y specifyingthe positionof a point on the surface. This is the reciprocityprinciplefor a

medium with variablern. Itcan be rearrangedto read

fs dS f_,a<o [g •/L[ [Lt (_, g)L2(_,-g) Lt (_,-g)L,(_, g)]"`,(p_.) - _ j aa(g) = o, (t3)
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where the integration over 12(4 ) is only over directions for which 4 • _ < 0. When there are internal

sources in the medium of intensity density Q(F, 4), where _"specifies the position of a point in the

medium, a term Q(_', 4)/m'(r-') must be added to the right-hand-side of Eq. (9). In this case, it is

easy to show that the right-hand-sideofEq. (13)becomes

j(. d_( 4) /v dv [ Q' (r"-4)Ll (_" 4) -rn'(r-')

It isstraightforwardto use thisto deriveEq. (2) in the text. Consider a volume with upper

surfaceat the top of the atmosphere, and lower surfacejustbeneath the sea surface. Then, for

problem 1 choose the incidentradianceon the top ofthe atmosphere (TOA) to be that of the solar

beam, i.e.,Li(p_,4) = F06(4- 40),where p_ isa TOA point,and _0 isthe directionof the solar

beam. We assume that there isno upward radiance incidentat _, a point just beneath the sea

surface,i.e.,Lt (p_,4) = 0 for 4 * _ < 0. This isreferredto in the textas the reciprocalproblem.

For problem 2 (the directproblem in the text),we let L2(p_',4)= 0 for 4 * n < 0 (no incident

radiance on the TOA), and L2(p_,_) be specifiedfor4 * fi< 0, i.e.,a specifiedupward radiance

distributionincidenton the bottom surface.Then applying Eq. (13),we have

1 [ Lt(_,4)L2(_, -4)
L2 (p_,-40) - Fo]_ •/_[Jo, 14 • fil m_ dft(4)'

where fldisthe fullsolidangleinthe downward direction,and m_, isthe refractiveindex ofwater.

Letting 4_ be the directionof the refractedsolarbeam in the water fora flatsurface,

L_(P-r,-40) 1 f . _ -.L,(_, -4)
= Fo[4o-ohlm_ Jo J4*nlLt(pB,_)7----_-:--_--57'dfl(4). (14)L2(P-B, -4_ ) d IJ2t, p B , --C.O )

In the absence of absorption and scattering in the atmosphere,

Lt(p_,4) = Tl(40)F0 140•__.________I5(4 _ 4) '

where TI(4) isthe Fresneltransmittanceof the interface.Equation (14)then yields

TI(&)=

17



which is the fmmJlisr relationship for the propagation of radiance across the sir-sea interface. If

we replace L2(p_,-_) in Eq. (14) by L.(p_,-_o), the water-leaving radiance just above the sea

surface, i.e.,

then, Eq. (14) becomes

m 2

L2(_,-(g) = -----_-_.L_(p_, -_o),
Ts((o)

_ 1 f_ i,_- Fol_o._if1(_o) ,
L_(_, -_)• _ILI(_, _)_(-_,--_-) d_(i) :- t(-_o).

t(-_o) isthe quantity we definedas the diffusetransmittancein the text,Eq. (2).
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Figure Captions

Figure I. Comparison of the scatteringphase functionsforRayleigh scattering(dottedline)and

Petzold's_°turbidwater measurements.

Figure 2. SubsurfaceupweUing radiancepredictedusing the Rayleigh and Petzold phase functions.

The radiancesare normalized to theirmaximum value.Panel (a)Rayleigh with 9o = 40°; Panel

(b) Rayleigh with 80 = 60°;Panel (c) Petzoldwith 0o = 40°;Panel (d) Petzold with 6o = 60°.

Figure 3. The errorin t,induced by assuming that Lu isuniform,as a functionof wavelength and

aerosolopticalthicknessat the SeaWiFS scan centerand scan edge. The M90 aerosolmodel is

used in allthe computations. Panel (a)Rayleigh at the scan center;Panel (b) Rayleigh at the scan

edge; Panel (c)Petzold at the scan center;Panel (d) Petzold at the scan edge.

Figure 4. The error in t,induced by assuming that L_,isuniform, as a function of wavelength,

aerosolopticalthickness,and viewing azimuth (_b,)for00 = 0, The M90 aerosolmodel isused in

allthe computations. Panel (a)Rayleigh with 9o = 40°;Panel (b) Rayleigh with 0o = 60°;Panel

(c)Petzold with 00 - 40°; Panel (a)Petzold with 00 = 60°.

Figure 5. The errorin t,induced by assuming that L_,isuniform, as a function of wavelength,

aerosolopticalthickness,and viewing angle (0,)in the perpendicularplane of the sun. The M90

aerosolmodel isused in allthe computations. Panel (a)Rayleigh with 00 = 40°;Panel (b)Rayleigh

with 00 = 60°; Panel (c)Petzold with 00 = 40°;Panel (a) Petzoldwith 0o = 60°.

Figure6. SubsurfaceupweUing radiancedistributionsmeasured by Voss with the RADS system.I_'29

Panel (a) A = 450 nm, 80 = 58.2°;Panel (b) A = 500 nm, 0o = 59.7°.

Figure 7. The errorin t,induced by assuming that Lu isuniform, as a function of wavelength

and aerosolopticalthickness,using the Voss subsurfaceupweUing radiance distribution.The Mg0

aerosolmodel isused in allthe computations. Panel (a) 0o = 60° viewing in the perpendicular

plane to the sun;Panel (b) 0, = 80 = 60° with viewing azimuth _,.
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Figure 8. Computed t* for a pure Rayleigh-scatteringatmosphere. Panel (a) Values computed

using radiativetransfertheory. From bottom to top the curvescorrespond to A = 412,443,490,

555,670, and 865 nm. Panel (b),Error in t"resultingfrom using Eq. (7)in the text.

Figure 9. Value of t" as a functionofaerosolmodel and opticalthickness7"_.Upper curvesare for

A = 555 nm, lower curvesfor A = 443 nm. Panel (a)0o = 20°;Panel (b) 0o = 60°.

Figure i0. Influenceof verticalstructureon t" for the U50 aerosolmodel at 443 nm. Lines

correspond to placing allof the aerosolin the bottom layerof a two-layer atmosphere. Dots

correspond to the relyingthe aerosoluniformly with gas molecules throughout the atmosphere.

Curves from top to bottom are for0o = 20°,40°,and 60°.
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Figure 2. Subsurface upwelling radiance predicted using the Rayleigh and Petzold phase functions.
The radiances are normalized to their maximum value. Panel (a) Rayleigh with 8o = 40°; Panel
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Figure 6. Subsurface upweUing radiance distributions measured by Voss with the RADS system. 13'29
Panel (a) A = 450 nm, Bo = 58.2°; Panel (b) A = 500 nm, go = 59 .70.
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ABSTRACT

A measurement system for determining the spectral reflectance of whitecaps in the open ocean is

described. The upwelling radiance is obtained from a ship by observing a small region of the water

surface over time using a six channel radiometer (410, 440, 510, 550, 670 and 860 nm) extended

from the bow of the ship. DownweUing irradiance is simultaneously measured and used to

provide surface reflectance measurements. The system includes a TV camera mounted beside the

radiometer which provides a visual reference of surface events. Air/water temperature and wind

speed/direction are also measured along with global positioning system (GPS) data. Calibration

procedures and radiometric characterization of the system for operation under different sky

conditions and solar zenith angles is emphasized so that full advantage is taken of ship time

whenever whitecap events occur. Examples of the spectral reflectance of different foam types

(thick, dense, fluffy to thin residual patches) generated by the ship's bow in coastal regions are

presented and found to vary spectrally. The presence of submerged bubbles in the foam

measurement results in a lower reflectance at the longer wavelengths. For wavebands in the visible

region, the spectral reflectance values tend to equalize with higher reflecting foam from thicker,

fluffier and denser foam types.



1. Introduction

Remotesensingof theoceanby satelliterequiresaccurateatmosphericcorrection. This is

accomplishedby measuringtheupwellingradianceatawavelengthwheretheoceanis known to

contributevery little or no radiance(GordonandWang,1994a).This is typically doneat wavelengths

beyond760nm (andsometimesat 670nm) wheretheabsorptionpropertiesof waterareparticularly

strong. In thepresenceof whitecaps,whosequantityandfractionalcoverageof theoceansurfacevaries

primarily with wind speed,theoceansurfacemayno longerprovideanegligiblebackgroundfor

atmosphericcorrectionat theselongerwavelengths(GordonandWang,1994b).An understandingof

theadditionalor augmentedspectralupwellingradiancefrom whitecapsmustbequantifiednot only atthe

correctionwavelengthbutat otherwavelengthsparticularlyin the visible region where spectral

information provides a means of determining water content.

Previous authors have used a wavelength independent foam reflectance of 50% - 100% (Payne

1972; Gordon and Jacobs 1977; Maul and Gordon 1975) in conjunction with estimates of fractional

coverage to determine the augmentation effect Others have measured the spectral variation of foam in

the laboratory using clear water and a variety of more turbid water types with various concentrations of

detritus, sediment, etc. (Whitlock et al. 1982). Koepke (1984) established an efficiency factor that

accounts for the diminishing reflectance and increase in area of the whitecap as it ages thus providing a

smaller augmentation effect than that of other studies.

Estimates of fractional coverage of whitecaps have been carried out previously by photographic

methods, either from the air (Austin and Moran 1974; Ross and Cardone 1974) or from a stationary

platform over the ocean surface (Monahan 1971; Toba and Chaen 1973; Koepke 1984; Bortkovskii

1993). Spectral determination of whitecap and foam reflectance has been determined in the laboratory

(Whitlock et al. 1982) and from foam generated in the surf zone (Frouin et al. 1996). Whitlock's

laboratory experiments showed a decrease in reflectance with increasing wavelength beyond -0.8_tm.

However, Frouin reported a much lower reflectance than Whitlock at the longer wavelengths with a 40%

decrease at 0.87_tm, 50% at 1.02_tm and 95% at 1.651.tm relative to the reflectance at 440 nm. The

difference between the laboratory and field measurements is thought to be due to the stronger absorption



propertiesof waterat longerwavelengthsactingon light reflectedfrom submergedbubblesforcedinto

the water by large waves.

The quantity of whitecaps covering the surface area of the ocean is detected as an augmentation in

the upwelling radiance observed by the relatively low resolution of a satellite pixel. To measure the

spectral influence and magnitude of whitecaps in terms of a radiometric signal, the foam-free water-

leaving radiance must be differentiated from the radiance contribution of whitecaps. This entails

measurement of aU foam types; from thick fluffy, highly reflecting foam as the wave breaks to barely

distinguishable thin, residual and fragmented patches of foam as the whitecap decays back into the ocean.

To measure the spectral reflectance of these foam types, particularly within the life cycle of an individual

whitecap, requires an instrument of comparably high spatial and temporal resolution. Camera images of

the ocean surface can provide a varied foam assortment, but determination of the foam-free background

can be complicated by variation in sky reflectance towards the extreme regions of the image. This is

particularly true when the imaging system is mounted on a platform and at an angle to cover as large an

area of the water surface as possible. Use of a high resolution imaging system for spectral measurements

also requires a time delay between images of different wavebands, and the content of the spectral images

may no longer be identical.

Using a high resolution imaging system from an airborne platform provides greater coverage and

a decrease in sky reflectance variation as the height above the water surface is increased but at the cost of

surface resolution. High resolution spectral data of whitecaps is more feasible to acquire from a surface

platform particularly in the open ocean where flying an aircraft long distances and providing

simultaneous ancillary measurements such as wind speed/direction and air/water temperature may

become costly.

In this paper, a whitecap radiometer system for operation on board a ship or other surface

platform is described. The spectral reflectance of the water surface is measured by a 6-channel non-

imaging radiometer with a narrow field of view and wavebands at 410, 440, 510, 550, 670 and 860 nm.

The radiometer is deployed from the bow of a ship along with a "IV camera to provide a visual reference

of the radiometrically measured surface. In conjunction with the radiometer, a deck cell (cosine



collector)monitorsdownwellingirradiancewithmatchingwavebandsthusprovidingsurfacereflectance

measurements.By makingmanyhighspatialresolutionmeasurementsof thewatersurfaceat a fixed

periodicrate, spectraldataof individual whitecapsandtheirassociatedfoamtypes(def'medby their

reflectancemagnitude)canbeanalyzedandalsoprovideanestimateof their frequency.Measurementof

thefrequencyof differentfoamtypesprovidesavalueof fractionalcoverageandtheaugmentedspectral

reflectancecontributionof whitecapsto thewater-leavingradianceasobservedby oceancolor satellites.

In addition,thewhitecapradiometersystemacquireswind speed/directionandair/watertemperatureas

well asglobalpositioningsystem(GPS)informationto provideuniversaltime andlocation. Estimatesof

fractionalcoverageandaugmentedreflectancecontributioncanthenbecorrelatedto theseparameters.

In thispaperwedescribethewhitecapinstrumentsystemandgiveparticularattentionto

radiometriccalibrationfor field useundervarioussky conditionsandsolarzenithanglesin orderto

correctfor slightdeviationsin solidangleresponseof thedeckcell's cosinecollectorandtheeffectsof

spectralf'dtermismatchbetweenchannelsin thedeckcell andradiometer.Calibrationfor different sky

conditionsprovidesa robustsystemthattakesfull advantageof shiptimeandprovidesconfident

reflectancemeasurementsof whitecapswhenevertheyoccur. In addition,performanceof thesystemis

discussedandfoamdatageneratedby theship's bowin coastalwatersisexamined.

2. Whitecap Radiometer Instrument Description

Our strategy has been to measure whitecap reflectance from a surface platform such as a ship;

either stationary or underway. The whitecap measurement system consists of a 6-channel radiometer

aimed at the water surface, a downwelling irradiance cosine collector with matching wavebands, water

temperature and air temperature sensors, an anemometer to determine wind speed and direction, and a

global positioning system (GPS) to record location, GMT time and determine ground speed and course

heading. Taking many reflectance measurements of a small area of the ocean surface over time is

equivalent to capturing a large field of view with high spatial resolution at one time.

The 6-channel radiometer has wavebands at 410, 440, 510, 550, 670 and 860 nm and is aimed

at the water surface with each channel covering - 1° field of view. A TV camera (Sony SSC-C350 color



CCD camera)with a greaterfield of view (-40 °- 50 ° using a 6 mm focal length video TV lens) is

mounted beside the radiometer to provide a visual reference of radiometer measurements and is recorded

on video tape using a video cassette recorder (Sony EV-C100). A triggerable analog switch has been

implemented to allow individual TV frames to be date and time marked whenever the radiometer acquires

data, thus providing a frame by frame reference.

The radiometer and TV camera assembly are extended over the bow of the ship as a unit by

means of a boom. The boom is comprised of a number of segments of equal length and any number can

be deployed to provide extension from -1 m to -10 m depending on the sea state and at the same time

ensure that optical shadowing and wind sheltering ship effects are minimized.

To provide reflectance measurements of the ocean surface, downweUing irradiance is measured

by the cosine collector (deck cell) at 6 matching wavebands, positioned on the ship to avoid shadowing.

Wind speed and direction are measured by an anemometer placed in an unobstructed position towards the

bow of the ship. Water temperature is measured with an accuracy of 0. I°C close to the surface by means

of a small thermistor with signal conditioning circuitry to provide a linear and stable output. The

thermistor's signal and power cable is fed down the center of a polypropylene rope with the thermistor

exposed roughly 10-20 cm from the end of the rope. The buoyancy of the polypropylene rope keeps the

thermistor at or near the surface and the remaining few centimeters of the rope are flayed to ensure the

thermistor does not skip out of the water as the ship moves. Air temperature is measured with an

identical thermistor housed in a white plastic louvered cylinder to prevent direct solar heating. It is

suspended from the bow of the ship close to the water surface but at a sufficient height to prevent contact

with sea spray.

The analog signals from the radiometer, deck cell, anemometer, GPS, water and air

temperature sensors are sampled at a fixed periodic rate. Upwelling and downwelling radiometric data

along with air/water temperature, wind speed/direction are sampled -7 times a second continuously for

about 30 seconds (providing 200 contiguous samples), after which GPS data; GMT time and location,

are appended to file. The acquisition sequence is repeated until a time determined by the operator. With

the exception of the GPS data, all parameters including radiometer and deck cell data are measured



simultaneously(within 20gts).Making many measurements of the reflectance from small areas of the

ocean surface as the ship moves through the water allows one to estimate white water coverage as a

function of wind speed and air/water temperature, as well as providing spectral information.

All cables from the various measuring components arrive at the electronics console which is

essentially an interface for individual cable connections as well as providing power and receiving analog

signals. The analog signals are processed through differential amplifiers, to eliminate ground fluctuations

that may originate over the long lengths of cable, before being digitized. The pre-conditioned analog

signals are fed to a National Instruments NB-MIO-16XL acquisition board resident in a Macintosh

Power PC. This acquisition board is configured to accommodate 16 referenced single-ended inputs and

provide 16 bits A/D resolution. The acquisition logic, processing sequence and storage to fide is

controlled by LabVIEW software. The software also provides graphing and numeric display capabilities

of the data as it is acquired. Data acquisition is allowed to free run and is halted at a time determined by

the operator. Data fries of various sizes are subsequently read into a statistical software package (Matlab)

to produce detector background corrected and radiometricaUy calibrated reflectance values of the ocean

surface along with air/water temperature and wind speed profiles.

a. The Radiometer

Each channel of the radiometer consists of an optical tube aligned parallel to one another. Light

entering each channel passes through a BK-7 window with a broadband AR coating. Behind this

window, light for each channel is collected by a 25 mm diameter, 100 mm focal length achromat with a

broadband AR coating. The converging light passes through a 10 nm bandpass spectral interference

filter. Behind the interference filters, broadband blocking filters are included to enhance out-of-band

blocking of unwanted light. The field of view for all channels (-1 ° ) is set by a 1.8 mm pinhole aperture

placed at the focal point of the lens with the active area of the detector positioned 1.5 mm behind the focal

plane. The detector for each channel is a silicon photodiode (Hamamatsu S 14(gi-04) packaged with an

integrated operational amplifier. The voltage output is fed into a low noise precision opamp (Analog

Devices PM- 1012GP) with a gain appropriate to each channel to offset variation in photodiode spectral



response before being sent to the electronics console. Power (+/-12 VDC) sent to the radiometer is

DC/DC converted and further regulated to supply +/-5 VDC to the photodetectors along with +/- 12 VDC

for the low noise precision opamps. Five of the six channels are arranged in a concentric fashion about

the long axis of the housing with the 410 nm channel taking up the central position. The complete

radiometer assembly is housed in a black anodized aluminum cylinder 30 cm in length and 11 cm

diameter (See Fig. I). These dimensions include an extension hood (5 cm in length) that is provided to

prevent rain falling on the window and to reduce light that may be reflected and refracted by sea spray

and salt deposits that inevitably collect on the window.

b. The Deck Cell

The deck cell is similar to the radiometer with the exception of the collection optics and its

housing. The deck cell utilizes a cosine collector with a -5 cm diameter white diffusive acrylic plastic

disk (Rohm & Hass, no. 2447) protruding ~ 1 cm beyond a dark rigid PVC base. Moving radially

outward, the base is terraced, increasing in height with radius to a diameter of 124 mm at which point the

height is flush with the top of the acrylic disk. The protruding acrylic disk provides a cosine response

and in conjunction with the terraced base def'mes a 2r_ field of view as well as ensuring a cosine response

at the larger zenith angles.

Five of the photodiodes with interference and blocking filters are arranged in a circle and slightly

angled to view the center of the acrylic disk from behind, while the sixth photodiode-f'tlter assemblage is

centered behind the acrylic disk. In this way the cosine response is common to all channels of the deck

cell. The photodiodes, electronics, and optical t-dters are identical to the 6-channels in the radiometer but

with a different gain on the precision opamps and with different optical apertures to accommodate the

spectral variation of the downwelling light and detector response.

The 15 cm diameter x 13.5 cm long cylindrical housing is made from rigid PVC plastic mounted

in a 2-axis gimbal. The bottom base plate of the housing is made from lead and in combination with the

gimbal mount helps the cosine collector maintain a horizontal attitude despite any low frequency small

amplitude rocking motion of the test platform.



3. Radiometric Calibration

a. Reflectance calibration

Laboratory radiometric reflectance calibration of the deck cell and radiometer was carried out

using a calibrated 1000 Watt (FEL) quartz-halogen lamp. The deck cell was positioned 50 cm from the

lamp with the surface of its cosine collector perpendicular to normal incidence. For the radiometer, a

Spectralon reflectance plaque was normally illuminated by the lamp 50 cm away and viewed by the

radiometer at a 450 angle. The reflectance of the plaque is 94.6 +/- 0.2% from 400 to 870 nm normally

illuminated and viewed at an 450 angle. Background dark current readings were taken before and after

each measurement. Absolute calibration was done in this manner before and after deployment in the field

to verify radiometric stability.

b. Radiometric performance

To assess the radiometric performance of the radiometer and deck cell in determining reflectance

under the variety of natural sky conditions and solar zenith angles occurring during a ship cruise, the

radiometer and deck cell were tested outside the lab. The radiometer was aimed vertically downward at a

Spectralon reflectance plaque with the deck cell positioned beside the plaque. The plaque surface was

level and at the same height as the flat surface of the deck cell cosine collector. The radiometer was

positioned to avoid direct shadowing of the plaque and the deck cell, and so that the radiometer blocked

out only a small section of the sky.

Under overcast conditions with dark and bright patches of cloud passing overhead, variations in

the measurement of the reflectance value of the plaque were observed. A set of reflectance data were

taken around noon with sky conditions going from one extreme (very overcast - sky totally covered and

no distinct shadows observed) to another (direct sunlight breaking through a large clear patch with solar

elevation angle -60°). The variation (maximum to minimum) in reflectance values observed during these

conditions for each channel (410 through 860 nm) were: 0.040, 0.045, 0.039, 0.050, 0.058 and 0.063

with the mean reflectance value for each found to be 0.987, 1.022, 0.969, 0.993, 1.001 and I. 122

respectively (See Fig. 5), the reflectance variation of the reflectance plaque and correction will be



discussedlater. Calibrationfactorsdeterminedunderlaboratoryconditionsobviouslywere notsufficient

to measurerealfield conditionswith achangingangulardistributionof the2n light field. Theseresults

ledto arigorouscalibrationandunderstandingof theradiometricsystemsothatwecould beconfidentof

reflectancedataacquiredundermanyskyconditionsandtimesof day in field measurements.

c. Lineari_

The f'u'st test was to check the linearity of both the deck cell and radiometer in order to identify

and eliminate any gross malfunctioning of the system. The photodiodes are reversed biased and as such

should be highly linear. However, a damaged component, loose wire or bad connection could exhibit

non-linearity at higher light levels that may not be seen at lower light levels of the laboratory calibration.

As the gain and throughput of these instruments is specifically set for outdoor conditions, taking them

into the lab where the proportion of blue light is comparatively low makes it difficult to cover the full

dynamic range that might be encountered outdoors particularly for the shorter wavelength channels.

The linearity test was carried out by moving a constant light source specific distances from the

instrument in question and the output signal recorded. In the case of the deck cell, the cosine collector

was removed and a diffusive surface of much greater transmissivity put in its place in order to achieve an

equivalent illumination intensity found outdoors on a clear day with the sun overhead. The diffusive

surface was required to reduce non-uniform illumination effects observed by the off-axis channels when

the lamp source (140W) was brought close to the deck cell.

The radiometer, with a narrow field of view, was tested in much the same way but required a

1000W lamp source and was tested intact without any alterations. A diffusive surface with low

transmission was placed a fixed distance in front of the radiometer to provide uniform illumination as the

lamp source moved position. Both the deck cell and radiometer were found to be highly linear.

d. Angular response of deck cell and plaque

From the experiment outdoors, it was noted the that measured reflectance value of the plaque

would sometimes increase and at other times decrease even though the downwelling intensity remained



muchthesame.Thissuggesteda possiblesensitivityof the instrumentationto theangulardistributionof

thedownwellinglight field. A crude test done under a clear sky with the sun high overhead also seemed

to support this view. An opaque surface sufficiently large to continually block out the direct sun incident

on both the deck cell and the reflectance plaque was raised and lowered to simulate a changing angular

light field. By doing this, the reflectance value of the plaque was also observed to change in a consistent

manner with changing angular light field.

The angular response of the deck cell and the reflectance plaque was measured in the lab. With

the lamp source (point) placed - 1.5 meters from the surface of the cosine collector of the deck cell, the

deck cell was rotated in 10° increments from normal incidence to plus and minus 90 °. The reflectance

plaque could not be viewed from the normal due to the restrictive geometry of placing the detector in the

same position as the source. Starting with the closest reasonably achievable viewing angle of 2 ° ,

subsequent measurements were taken at 5 ° through 85 ° at 5° increments. Spline curves were then fitted

to these data points and the results of the angular responses for both the deck cell and the reflectance

plaque are shown for the 410 nm channel in Fig. 2(a). Also included for reference is the angular

response of an ideal cosine collector or Lambertian reflector. In Fig. 2(b) the angular response from 0 °

to 85 ° for both the deck cell and reflectance plaque is shown for all channels in terms of deviation from

true cosine.

In most channels, the response of the deck cell and reflectance plaque are similar with shght

differences becoming apparent at larger angles of incidence. Although both deviate from true cosine,

they appear to be close in response to each other with the exception of the poorer deck cell performance at

860 nm. For channels 410, 440, 510 and 550 nm the deck cell appears to have an angular response that

is closer to true cosine than the reflectance plaque particularly at the larger angles. The 670 nm channel

of the deck cell and reflectance plaque are the most similar yet both deviate from true cosine. In the 860

nm channel the deck cell response is much lower than the reflectance plaque response. Also, the

reflectance plaque appears to have a consistent angular response in 'all channels.



To betterunderstandtheimplicationsof theseangularresponsemeasurements,performanceof

thedeckcell and reflectance plaque operating outdoors under 2_ illumination must be addressed. To

achieve this, the angular response variation in solid angle with zenith angle must be taken into account.

In Fig. 3 the angular response has been weighted by 2z sinO dO which accounts for the greater solid

angle viewed with increasing zenith angle (0). Figure 3 shows the solid angle response for the 410 nm

channel of the deck cell and reflectance plaque and also for a true cosine solid angle response. These

values are normalized to the ideal cosine sensitivity at 0% The solid angle response for both the deck cell

and reflectance plaque in terms of deviation from true cosine is identical to Fig. 2(b).

For the deck cell and the radiometer to measure correct reflectance of the calibrated reflectance

plaque outdoors, both the deck cell and reflectance plaque must be corrected for solid angle response to

the particular downwelling angular light field distribution. To measure true (correct) reflectance, R, in

each channel,

where L, is true upwelling radiance from a perfect Lambertian reflector, E, is true downwelling irradiance

measured by an ideal cosine collector, and

L, = Lr, rr,d,

where L,_ is the radiance measured by the radiometer viewing the reflectance plaque and r,_d is the

correction factor, due to deviation of plaque response from true Lambertian, applied to L,_ to yield L r

Similarly,

Et "- Edc rdc,,



where E_ is the downwelling irradiance measured by the deck cell and r_: is its correction factor. Also,

2lr_ TC(O). L(O). sinOdO

r"a = 2tcf RP(O). L(O). sinOdO

TCR

RPR

and,

2:r I TC(O). L(O). sinOdO TCR

r_ 2_f DC(O). L(O). sinOdO DCR

where TC is the true cosine response, RP the reflectance plaque response, DC the deck cell response, L

is the downwelling radiance or sky condition and 0 is the zenith angle. TCR, RPR and DCR are the true

cosine, reflectance plaque and deck cell responses respectively for a particular sky condition. Therefore,

DCR
where C, =

RPR
, and the response correction factor, C,, is dependent on sky condition L(O). For

example, to simulate the overcast sky condition the coroidial expression, L(O) = 1 + 2cosO (where 0 is

zenith angle), is used. C, in this case is the product of the angular response of the deck cell and the

overcast sky distribution, integrated over all zenith angles and divided by the integrated product of the

angular response of the reflectance plaque and the overcast sky profile over all zenith angles (0 = 0 ° to

90°). This process is repeated for each waveband channel. See Table 1.



Othersky conditionshavebeensimulatedsuchasdifferentsolarzenithangleson aclearday.

Datafrom principalplanemeasurementstakenduringclearsky conditionsusingasun-tracking

photometer(Welton,1996),developedbyCIMEL, wereusedto generatetheradiancedistribution tbr

different solarzenithanglesat 0°, I0 °, 20 °, 30 °, 40 °, 50 °, 60 °, 70 ° and 80 °. Radiance measurements

from the sun photometer-sky radiometer at two different wavebands (440 and 860 nm) passing through

the sun at a 55 ° solar zenith angle were used. There was no discernible difference in the correction

factors, C r, when the two wavelengths were applied, and changing the peak solar radiance by a factor of

10 only effects the resulting correction factors shown in Table 1 by -0.1%.

As can be seen from Table 1, applying the laboratory calibration relationship between the deck

cell and the reflectance plaque to determine reflectance under a clear sky with the sun directly overhead

(solar zenith angle = 0 °, i.e. 'sun 0') is not valid.

e. Filter response

In addition to characterizing the effect of the angular response mismatch of deck ceLl and

reflectance plaque under different sky conditions, the spectral filter response must also be examined. A

monochromator using a 1000W lamp source was used to determine the bandpass characteristics of each

channel in both the deck ceLl and the radiometer. The monochromator output bandwidth was set to 1 nm

to profile the nominal 10 nm bandpass of each filter assemblage. Measurement of the bandpass filters in

each channel of the radiometer was a straightforward process. However, for the deck cell the amount of

light passing through the diffusive acryhc material of the cosine collector was too small to afford any

appreciable signal and was removed as before.

In order to normally illuminate the filter assemblages in the deck cell, the deck cell housing had to

be angled with respect to the monochromatic output beam since the f'dter assemblages and their

photodiodes (with the exception of the center photodiode-filter assembly) are purposely angled to view

the center of the cosine collector. This action subsequently raised the question of the viewing angle of

the interference filters inside the deck cell. The back of the cosine collector subtends a half angle of -28 °



to thephotodiodedetectorsandthefield of view for eachchannelwasestablishedby thedifferentsized

opticalaperturesplacedin front of thef'dters.Theywereintendedoriginally to increasefight throughput

at theshorterwavelengthsandreducethethroughputat the longerwavelengths.The hail"anglefield of

view for eachdeckcell channelwas24°, 23.5 °, 18.5 °, 18.4 °, 16.6 ° and 16.6 ° for channels 1 through 6

(410, 440, 510, 550, 670, and 860 nm).

From these measurements it became obvious that the interference filters would possess different

bandpass and transmission characteristics than measured under normal illumination conditions. As the

actual bandpass profile of the deck cell channel could not be measured directly, due to insufficient light

output from the monochromator with 1 nm resolution, the bandpasses were calculated. This involved

accounting for the center wavelength shift to shorter wavelengths, the associated transmission drop off

and bandpass broadening (Handbook of Optics, 1995). The center wavelength shift, transmission drop

and bandpass broadening were weighted with the effective increase in light intensity contribution due to

the increase in field of view of the back side of the uniformly illuminated cosine collector at larger angles.

The photodiode spectral response was also considered.

The calibration procedure for the radiometer (viewing the plaque) and the deck cell would account

for this difference in spectral response only if the spectral profile of the lamp source in the lab was the

same as the solar spectrum. Obviously it is not, and differences in the spectral profile of the lamp and

solar spectrum must be accounted for with the broader bandpass of the deck cell channels. In Fig. 4, the

radiometer and deck cell bandpass profiles (calculated) for each channel are shown along with the

normalized lamp source and solar spectral prof'des. The difference in the estimate of reflectance will be

affected by going from a laboratory calibration under the lamp source to operation outside under the

different spectral weighting of the solar spectnun. In Table 2, the bandpass multiplication correction

factors which have been calculated to offset the error in making reflectance measurements out of doors

are provided. The bandpass correction factors, Cae(zlA), have been arrived at by calculating the ratio of

the integrated product of the radiometer bandpass and the solar spectrum, to the integrated product of the

radiometer bandpass and lamp spectrum, divided by the ratio of the integrated product of the deck cell



bandpassandthesolarspectrum,to theintegratedproductof thedeckcell bandpassandlampspectrum

or"

C--Rp "" --" "

where R is the bandpass response for a particular channel of the radiometer, DC the bandpass response

for the same channel in the deck cell and Lt=,v, and L,_ are the illumination profiles over z_ for the

lamp source and sun respectively.

f Application of the correction calibration

In Fig. 5 the overcast sky and 30 ° solar zenith angle (sun30) correction factors are applied to the

reflectance data measurements taken of the plaque outdoors (as conditions varied from being very

overcast to direct sunlight breaking through with 30 ° solar zenith angle and then eventually to broken

conditions). The filter bandwidth correction has also been included. Due to the higher gain of the

radiometer which is specifically set to measure the lower upwelling water reflectance signal and foam

contributions, the 860 nm channel observing the -95% reflectance plaque saturates when the sun appears

from behind the clouds. This saturation has not been included in characterizing the 860 nm reflectance

variation with sky condition.

Variation in the measured reflectance persists as the real sky condition departs from the modeled

sky definition. The most noticeable benefit of these correction factors is in the 860 nm channel.

Regardless of the sky correction, application of the solid angle response and filter bandwidth correction

results in a mean measured reflectance (over the time series shown) of 0.9944 for overcast or 1.017 for



directsunwith 30° zenithangleratherthantheuncorrectedmeanreflectanceof 1.122. [It shouldbe

notedthatareflectanceplaquevalueof I hasbeenassumedlbr simplicity in this analysis but its real

values of 95.7%, 94.2%, 94.4%, 94.3%, 94.4% and 94.9% for channels 410 through 860 nm are

applied to the field data]. The best description of an overcast sky and direct sun within the time series are

shown on the figure. The application of the appropriate sky correction to the data taken under a valid sky

description depicts a closer approximation to a reflectance value of 1 in all channels. The standard

deviation from a reflectance of 1 for all channels is 0.0025 for the overcast condition and 0.0028 for the

direct sun condition. Other regions of the time series are the result of sky conditions that are more

difficult to describe and therefore to further correct. The standard deviation of variation in reflectance

over the extreme sky conditions that occurred during the complete time series in Fig. 5 was 0.0081,

0.0089, 0.0086, 0.0101, 0.0127 and 0.0313 for channels 410 through 860 nm respectively.

In Table 3, the amount of correction that has been applied to the measured reflectance for each

channel and for both sky conditions ('sun 30' and 'overcast') is shown. The resulting accuracy or

percentage deviation from a reflectance value of 1 is given in the last two columns. For example, the 860

nm channel data is corrected by 12.77% in the overcast data to read a corrected reflectance of 0.995 (i.e.

0.005% accuracy). The direct sun data is saturated for this channel.

g. Correction of field data

To make reflectance measurements of the water surface, only the deck cell requires solid angle

response correction for different sky conditions. We have:

where R is the reflectance we wish to determine, L,, s is the upwelling radiance from the water surface

(and including contributions from below the surface) received by the radiometer and E, is the true

downwelling irradiance. As before,



E, =

where E_ is the downweUing irradiance measured by the deck cell and r_c is the sky correction factor that

must be applied to the deck cell to have true cosine response, i.e.,

where,

E 2_ I TC(O). L(O). sin(O)dO TCR

r,_ = E_. 2_ DC(O). L(O). sin(O)dO DCR

R='-_.C! and cI=DCRTcR

Table 4 shows the field correction factors, C;, the measured reflectance must be multiplied by in order to

read correct reflectance.

4. Experiment Description, Results and Discussion

The initial measurements with the whitecap radiometer system were made to evaluate its

performance and ability to provide a dependable data base of air/water temperature, wind speed/direction,

GPS information as well as radiometric and visual events recorded and date/time stamped onto video

tape. Initially the system was deployed on the RV McGaw for a 14-day cruise off the coast of Southern

California. The ship visited a number of stations located in a small area on a daily basis to collect data for

other oceanographic studies. Weather conditions were far from ideal for whitecap formation, being

primarily calm with mainly diffuse overcast days. However, data was taken of foam generated by the

ship's bow as it moved from station to station. Also, application of the overcast correction to foam data

acquired during overcast conditions is less sensitive to error than applying a clear sky correction that only

approximates the true solar zenith angle and also removes the possibility of specular sun glitter in the

measurements. The radiometer was mounted at different positions over the side of the ship providing a



data base for radiometric performance of the system and analysis of different stages of foam

development.

The control software (LabVIEW) had originally been set to acquire all data at the same time. In

this way, radiometric, air/water temperature, wind speed/direction could easily be addressed by UTC

time or location during later analysis. However, the price for waiting for updated GPS data at every

sample resulted in a system acquisition rate of about 0.5-1 Hz despite setting the National Instruments

acquisition board to the optimal acquisition rate. In the rare moments when a whitecap did happen to

form, the slow update of the system failed to provide enough samples of the event and in many cases

missed the event altogether. Had the wind speeds being much stronger, yielding a good whitecap

coverage, the system would have provided sufficient data.

Another factor to consider in capturing transient white water events was the integration time. The

0.5-1 Hz sampling rate of the system was not radically affected by varying the integration time due the

wait period for GPS data. Although the data acquisition rate of the board was optimized (55 kHz

sequential sampling frequency over 16 input channels), a set number of samples were binned at high

speed (100 samples) to increase the signal-to-noise ratio, and the average value for each channel written

to file. This yielded an effective integration time of the radiometer of just under 30 ms, i.e. just less than

a TV video frame period so visually recorded events could be correlated to radiometric measurements

with optimal signal-to-noise binning.

Figure 6 is an example of the bow foam data obtained. In this example, the radiometer samples

as the ship moves to its next station and half way through this time series the ship slows to complete

stop. When the ship has slowed to a speed where bow foam is no longer generated in the field of view

of the radiometer, the water-leaving radiance and sky reflectance can be determined. The sky condition

was completely overcast and slightly foggy, with a very calm water surface. This measurement of the

foam-free water could then be subtracted from the foam reflectance to provide the spectral augmented

foam reflectance contribution although the real meaning of augmented reflectance in this case is lost due

to the origin of the foam.



In Fig. 7 the spectral reflectance of foam is shown is terms of different reflectance intervals

relating to different foam types, i.e. thick fluffy fresh dense foam to residual thin patches, streaky foam

and submerged bubbles. For this differentiation, any reflectance spectrum with a particular value at 860

nm that falls within a reflectance interval is averaged. In this example, the set reflectance intervals are 0-

0.04, 0.04-0.08, 0.08-0.12, 0.12-0.16, 0.16-0.20, 0.20-24, 0.24-0.28, 0.28-0.32, 0.32-0.36, 0.36-

0.40, 0.40-0.44, 0.44-0.48, 0.48-0.52, 0.52-0.56, 0.56-0.60, and 0.60 - 1.00. The number of spectra

averaged in any one interval is also shown to give an indication of the measurement accuracy in

determining the spectral prof'fle for that reflectance level.

Foam data was also acquired under clear and sunny conditions where the effects of specular sun

glitter were included. As the ship was there to service test station areas in a small grid, there was

frequent changes in ship heading, making a fLXed radiometric viewing angle with respect to the sun

difficult to maintain. These changes in ship heading at random times of the day made the quantity of

specular sun glitter more difficult to estimate. Some specular sun glitter was tolerable but depending on

the illumination and viewing geometry it could at times radically affect the reflectance signal. In addition,

it was difficult to avoid ship shadow particularly at lower solar zenith angles. The effects of specular sun

glitter in radiometrically discriminating white water from nonwhite water events is addressed elsewhere

(Moore et al. 1997 ). However, much of the data from this cruise was acquired under overcast sky

conditions.

In Fig. 8 a collection of foam data taken at different times throughout a very overcast morning,

starting with local times of 7:45 am, 10:30 am, 11:00 am and 12:00 noon (19 October 1995), was

complied into a single time series. The foam reflectance at the beginning of the time series is highest due

to thicker fluffier foam layers generated by a higher ship speed. This first part of the time series is the

same data used in Figs. 6 and 7, followed by starts and stops and slower ship speeds producing a varied

set of foam reflectances. As before, reflectance intervals relating to different foam types (or foam

thicknesses) and the foam-free water-leaving radiance and sky reflectance (referred to as the foam-free

water reflectance) are shown in Fig. 9 along with the number of spectral reflectance values used in the

estimation of each interval.



The pronounced drop off at the 670 and 860 nm channels is thought to be due to the strong

absorbing properties of water at those wavelengths particularly on light reflected from submerged

bubbles. Also of interest is the drop offin the 440 and more so in the 410 run channels. These

suppressed reflectance values at either end of the spectrum become more acute with higher reflectance

values corresponding, in general, to thicker and more developed foam.

In Fig. 10 the spectral reflectance of intervals 2, 4, 7, 10 and 12 from Fig. 9 are shown. The

spectral profdes are normalized at 440 nm along with the background foam-free water reflectance. The

spectral variation of different foam types can be seen by normalizing their reflectances. The foam-free

water spectral reflectance profile is different showing a relatively small difference between 410 and 440

nm. The foam-free water has reflectance values of 0.0431, 0.0466, 0.0509, 0.0535, 0.0370 and 0.0310

at 410, 440, 510, 550, 670 and 860 nm. The influence of the background foam-free water reflectance

can be seen particularly in the lower reflectance intervals. The 550 nm value in interval 2 is slightly

higher than the 510 nm value and the spectral shape appears to be somewhere between the foam-free

water reflectance and that of a foam reflectance from a higher reflectance interval. While the slope

between the 670 and 860 nm values for reflectance interval 2 is smaller than for the higher reflectance

intervals, it is not quite as small as the foam-free water reflectance. The high 510 and 550 nm values in

both the foam-free reflectance interval and interval 2 seem to eventually disappear in the higher

reflectance intervals. Since the lower reflectance interval is comprised of the thinnest foam types, with

patches of single-layered bubbles, measurements of the foam-free water reflectance and water-leaving

radiance will inevitably be included. With thicker and denser foam types comprising the higher

reflectance intervals, the measurement of foam-free contributions decreases with higher reflectance

interval. The probability of including the reflectance contributions from submerged bubbles also

decreases with higher reflectance intervals. On the other hand, the 410 nm values appear to remain the

same regardless of reflectance interval.

In Fig. 11 the augmented reflectances for the same foam types used in Fig. 10 normalized at 440

nm are shown. The measure of augmented reflectance in this case simply means that the foam-free water

reflectance has been subtracted from the foam reflectance in order to investigate spectral variation with



foamtypeonly. Many features are similar to the reflectance prof'fles for these intervals shown in Fig. 10.

As expected, with the removal of the foam-free water reflectance, the smallest reflectance interval no

longer shows the similarity to the background foam-free water reflectance as it did in Fig. 10. All foam

types are essentially identical with the exception of the 670 and 860 nm values which increase with

higher reflectance interval. Once again the all foam spectra have a lower 410 nm value than the foam-free

reflectance, and the 440, 510 and 550 nm values are almost equivalent, explaining the white appearance

of foam. However, the values at 410 nm now appear to increase, if only very slightly, with increasing

reflectance interval. Also the drop off from 440 run to 860 nm, in these normalized spectra, can now

easily be seen to decrease in a progressive manner with increasing reflectance interval and therefore of

foam type; for reflectance interval 2 (with spectral augmented reflectance at 440 nm of 0.0597 taken

from 357 samples with background foam-free water spectra subtracted) there is a -62% drop, for interval

4 (spectral augmented reflectance at 440 run of 0.252 from 94 samples) it is 57%, for interval 7 (spectral

augmented reflectance at 440 nm of 0.488 from 113 samples) it is -53%, interval 10 (spectral augmented

reflectance at 440 nm of 0.620 from 48 samples) -45% and -41% at interval 12 (spectral augmented

reflectance at 440 nm of 0.701 from a single sample).

From this data there appears to be a similar drop off trend in the blue between the 440 nm and

410 nm values. Once again the greatest drop off occurs for the lowest reflectance interval although not as

large as between 440 and 860 rim. For interval 2 there is a -20% drop off compared to the foam-free

reflectance drop offof-7%. At interval 4 a -16% drop, interval 7 a -13.5% drop and at intervals 10 and

12 a -15 and 17% drop respectively. This increase in drop offin intervals 10 and 12 is possibly due to

statistical lack of data.

While the very strong absorption properties of water may explain the lower reflectance values at

860 and 670 nm, the drop off at 410 nm, on the other hand, raises the question of whether the

absorption properties of the water in the blue wavelengths are responsible for this effect. The absorption

spectrum of pure sea water is low from about 550 nm down past 400 am and becomes less absorbing

with shorter wavelength. However, the presence of dissolved organic matter, yellow substance, detritus

and phytoplankton, one or other of which is typically abundant in coastal waters, increases the



absorption qualities of the water body in the shorter wavelengths. (The spectral absorption coefficient of

this water was 0.11, 0.10, 0.065, 0.08, 0.475 and 4.3 m l at the corresponding wavelengths (Roesler

1995)). In the case of absorption in the red wavelengths, it is the very strong absorption qualities of the

water itself that cause the observed attenuation, and can easily outweigh the effects of any additional

absorption due to particulates present in the water with the exception of high sediment amounts in turbid

waters (Whitlock et al., 1982). Even so, the acute drop off at 410 nm cannot be fully explained by water

absorption when considering the small absorption increase between 410 nm and 440 nm compared to the

much greater absorption difference between 440 nm and 670 nm for similar values of augmented

reflectance.

5. Conclusion

The whitecap system for determining the spectral reflectance of whitecaps in the open ocean has

been described and calibrated for optimum use on beard a ship or other over water surface platform. The

calibration for different sky conditions and solar zenith angles, if not exactly represented by the real sky

conditions at the time of acquisition, shows the degree of error that can be incurred without correction

and indicates the degree of spectral variation that must be due to real effects in the field. In this paper we

have also shown how the system works with an understanding of the possible errors that could have

been incurred in going from laboratory calibration with a lamp source acting as a point source to outdoor

2x illumination under the solar spectrum.

The system has been designed to acquire spectral data of real whitecaps and their frequency rather

than foam generated from the ship's bow. By taking many reflectance measurements of the water

surface over time, a database of the spectral reflectance of different foam types and their frequency of

occurrence can be assessed, providing estimates of fractional coverage and the augmented or extra

spectral reflectance contribution of whitecaps and foam. Measurement of wind speed/direction and

air/water temperature will provide additional information in correlating the augmented signal to these

formation parameters.



Nevertheless,field testingthewhitecapmeasurementsystemhasprovidedinterestingintbrmation

on thespectralfeaturesof foam. Examplesof foamreflectance,whichcangenerallybe relatedto

different foamtypesandthicknesses,havebeenshownwith interestingfeaturesthatdiffer from the

foam-treewaterspectralprofile. Themagnitudeof thesefeaturesaresignificantlygreaterthantheerror

dueto illuminationconditionandsolidangleresponsedeviationof thecosinecollector, t-flter bandwidth

mismatch or reflectance calibration of the system. Of particular interest is the drop off between the 440

nm and 860 nm values. These results are in good agreement with work reported by Frouin et al. (1996)

taken in similar waters, although with lower 670 nm values (see Figs. 10 and I 1) due to increased

quantities of submerged bubbles generated by the ship. The greatest drop off is found for the thinnest

foam layers (Fig. 11) where the majority of measurements in this reflectance interval are likely to be

made of submerged bubbles. In the data acquired here, there is a greater proportion of submerged

bubbles in the lower reflectance intervals due to the nature of the foam type generated by the relatively

immense and hydrodynamical shape of the ship bow forcing large quantities of bubbles deep below the

surface. As noted before, this drop off is considered to be due to the stronger absorption properties of

water at longer wavelengths, effecting light that is reflected from submerged bubbles through a small

layer of water between the bubbles and the surface. In the case of surf waves, the majority of

measurements that fall within a similar reflectance interval may be from a larger proportion of thin surface

foam, which produces an equivalent reflectance in the visible region to that of dense packs of submerged

bubbles, but lacks the severity of the 670 and 860 nm attenuation found in ship bow foam.

The augmented reflectance for different foam types (Fig. I l) shows a distinct change in the

spectra in going from the foam-free water reflectance to the thinnest foam measurement. It also shows an

increasing trend in the 670 and 860 nm values with respect to the other wavebands as the foam becomes

thicker and more highly reflecting. On the other hand, the reflectance of foam (Fig. 10), without the

background foam-free water reflectance subtracted, shows that the water color becomes more prominent

in measurement of the thinner and lower reflecting foam types. The foam-free water reflectance

influences the thinner foam spectra due to the inevitable inclusion of foam-free reflectance contributions.

Since the color of the loam is inextricably related to the coh)r of the water, the use of a normalized foam



or whitecap spectrum at 440 nm to describe foam types in terms of percentage drop off may not be robust

for every application. Even the use of normalized augmented reflectance, which appears to effectively

remove the water color influence in these examples, can be limited when using smaller reflectance

intervals to determine the thinnest foam from the foam-free water.
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Overcast

Uniform

Sun 0

Sun 10

Sun 20

Sun 30

Sun 40

Sun 50

Sun 60

Sun 70

Sun 80

Channel 1

(410 nm)

1.0179

1.0243

1.0063

1.0034

1.0069

1.0061

1.0014

1.0046

1.0163

1.1061

1.1140

Channel 2

(440 nm)

1.0566

1.0643

1.0209

1.0142

1.0286

1.0383

1.0484

1.0596

1.0797

1.1396

1.1571

Channel 3

(510 nm)

1.0562

1.0629

1.0210

1.0141

1.0272

1.0398

1.0484

1.0621

1.0829

1.1407

1.1443

Channel 4

(550 nm)

1.0420

1.0453

1.0161

1.0127

1.0262

1.0317

1.0381

1.0463

1.0612

1.0983

1.0738

Channel 5

(670 nm)

1.0088

1.0088

1.0038

1.0085

1.0135

1.0093

1.0035

0.9996

1.0061

1.0493

1.0207

Channel 6

(860 nm)

0.9195

0.9131

0.9706

0.9935

0.9671

0.9402

0.9107

0.8825

0.8748

0.8988

0.8715

Table 1. Correction factors for each channel under different sky conditions due to the difference in solid

angle response between deck cell and reflectance plaque.

Channel 1

(410 nm)

Channel 2

(440 nm)

Channel 3

(510 nm)

Channel 4

(550 nm)

Channel 5

(670 nm)

Channel 6

(860 nm)

1.0008 0.9278 0.9839 0.9648 0.9884 0.9640

Table 2. Correction factors for different f'dter bandwidths of the radiometer and deck cell in going from

laboratory to outdoor illumination conditions.



Channel

410

44O

510

550.

670

860

Overcast -

amount of

correction (%)

1.8

2.0

3.8

0.5

0.29

12.77

Direct sun -

amount of

correction (%)

0.7

3.8

2.3

0.5

0.24

saturated

Accuracy of

overcast

correction (%)

0.51

0.05

0.63

0.09

0.17

0.005

Accuracy of

direct sun

correction (%)

0.25

0.6

0.37

0.95

0.37

saturated

Table 3. Effect of application of sky correction factor for each channel.

Overcast

Uniform

Sun0

Sun 10

Sun 20

Channell

(410 nm)

0.9529

0.9465

0.9822

0.9946

0.9879

Channel2

(440n m)

0.9823

0.9773

0.9939

1.0007

0.9999

Channel 3

(510 rim)

0.9809

0.9754

0.9935

1.0001

0.9983

Channel4

(550nm)

0.9699

0.9624

0.9894

0.9988

0.9959

Channel 5

(670 nrn)

0.9373

0.9276

0.9767

0.9942

0.9825

Channel6

(86Ohm)

0.8709

0.8563

0.9512

0.9866

0.9557

Sun 30 0.9749

Sun 40 0.9553

Sun 50 0.9388

Sun 60 0.9216

Sun 70 0.9135

Sun 80 0.8475

0.9940 0.9941 0.9874 0.9625 0.9125

0.9893 0.9876 0.9791 0.9426 0.8699

0.9814 0.9811 0.9694 0.9239 0.8339

0.9705 0.9709 0.9539 0.9031 0.8042

0.9545 0.9500 0.9246 0.8819 0.7749

0.8906 0.8763 0.8382 0.7964 0.7072

Table 4. Correction factors for each channel under different sky conditions due to deviation of solid angle

response of the deck cell.



Fibre Cavtions:

Fig. 1. A schematic of the whitecap radiometer and its components.

Fig. 2(a). Angular response of the deck cell and reflectance plaque for the 410 nm channel. Ideal cosine

collector response is shown for reference.

Fig. 2(b). Angular response of the deck cell and reflectance plaque in terms of deviation from true cosine

response for 410, 440, 510, 550, 670 and 860 nm channels. Each interval is 50%, and each

waveband is offset by 50% for separation.

Fig. 3(a). Solid angle response of deck cell and reflectance plaque for the 410 nm channel. Ideal cosine

collector solid angle response is shown for reference.

Fig. 3(b). Solid angle response of the deck cell and reflectance plaque in terms of deviation from true

cosine solid angle response for 410, 440, 510, 550, 670 and 860 nm channels.

Fig. 4. Normalized radiometer and deck cell bandpass prof'iles with lamp and solar spectra.

Fig. 5. Field test of system ability to measure a plaque reflectance, as described in text. Note that the 860

nm channel of the whitecap radiometer saturates when the plaque is illuminated by direct sun.

Each interval represents a reflectance difference of 20%, and each waveband is offset by 20% to

enable display.

Fig. 6. Time series of foam data generated by bow of ship. The lower trace is for 860 nm. The rest

(upper trace) are for other channels.



Fig. 7. Spectral reflectance of different foam types.

Fig. 8. Longer time series of foam data generated by ship showing periods when ship slowed and came

to rest.

Fig. 9. Spectral reflectance of different foam types from larger time series. 12, I4, I7, I10 and I12 refer

to reflectance intervals normalized at 440 nm in Fig. 10.

Fig. 10. Normalized spectral reflectance at 440 nm for different foam types taken from data used in Figs.

8 and 9. Note the spectral influence of the background water in measurement of the thinnest

foam types in interval 2.

Fig. 11. Normalized augmented spectral reflectance at 440 nm for different foam types (used in Fig. 10).

Note the spectral similarity for all foam types, and the increasing 670 nm and 860 nm values with

respect to 440 nm for increasing reflectance interval from thicker fluffier foam types.
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Abstract. A radiometric system, deployed from a ship, is used to directly measure the optical

influence of whitecaps. Estimates of the augmented reflectance contribution and fractional

coverage are determined from measurements in the Gulf of Mexico and open ocean waters of the

Pacific. The accuracy of these estimates are dependent on the ability to radiometrically determine

the difference between white water and nonwhite water events. Subtle spectral variations in the

visible are found in the augmented reflectance but are typically smaller than the error in determining

the white water threshold. Sky reflectance, sky condition, specular sun glitter, wave height and

wind direction can influence the spectral characteristics of the augmented reflectance particularly at

low sun angles. Evidence is presented suggesting that whitecaps cannot be modeled as lambertian

reflectors, particularly at low solar elevations. The augmented spectral reflectance of whitecaps

measured in the open ocean is found to be 0.00031 at a wind speed of 8 m/s, 0.00058 at 10 m/s,

and 0.00096 at 12 m/s for wavebands in the visible and 15% - 25% less at 860 nm.

Introduction

Due to the relatively small water-leaving radiance signal from the ocean in comparison to the

total light arriving at an ocean color sensor, the quality of data depends primarily on the accuracy of

atmospheric correction algorithms. Atmospheric correction over the ocean is determined by

measurement of the upwelling signal arriving at the satellite at a waveband where the radiance back

scattered out of the ocean is known to contribute very little or no signal [Gordon and Wang,

1994al. Utilization of near infrared wavebands beyond 760 nm (and even 670 nm) can be justified

in the absence of whitecaps (in case I waters) due to the strong absorption properties of liquid

water at those wavelengths. In the case of an agitated sea state the presence of whitecaps occurring

within a satellite image pixel augments the radiometric signal by an amount dependent on the

whitecap coverage and the reflectance of whitecap foam [Gordon and Wang, 1994b]. This is

referred to as the augmented reflectance of whitecaps. Previous researchers have used a whitecap

loam reflectance of 50% - 100% [Payne, 1972; Maul and Gordon, 1975; Gordon and Jacobs,



1977] and have assumed it to be constant at all wavelengths. Laboratory measurements carried out

by Whitlock et al. [ 19821 yield a value of -55% in the visible part of the spectrum for dense foam

in clear water and have shown that it diminishes with increasing wavelength beyond -0.8 orn, with

5% decrease at 0.85 gin, 10% at 1.02 l.tm, and 50% at 1.65 lam. Koepke [1984] determined the

effective reflectance of whitecaps, which takes into consideration the decrease in reflectance and

increase in area of an individual whitecap as it ages, to be 22% in the visible. This wavelength

independent estimate of the effective reflectance is then combined with the relative area covered

with whitecaps as a function of wind speed [Monahan and O'Muircheartaigh, 1980] in order to

obtain the total optical influence of whitecaps for different wind speeds. Koepke found that it was

necessary to introduce this value of effective reflectance since the simple combination of fractional

coverage with the foam reflectance values of Whidock, valid for dense fresh foam (-55%), gave

too high a value for the optical influence of the total whitecap.

Field measurements taken of the reflectance of foam generated by breaking waves in the

surf zone [Frouin et al., 1996] indicate a larger spectral variation in reflectance than reported by

Whitlock. Frouin found the reflectance decreased by 40% at 0.87 gin, 50% at 1.02 _un, and 95%

at 1.65 tam relative to the reflectance at 440 nm. The greater spectral variation in reflectance found

in field data, unlike the laboratory foam of Whitlock, is thought to be due to the strong absorption

properties of water at longer wavelength acting on light reflected from submerged bubbles forced

into the water column by the breaking waves.

In addition to the spectral differences between foam measured in the laboratory and in the

field, estimates of whitecap fractional coverage for different wind speeds are found to be quite

noisy [Blanchard, 197 l; Monahan, 1971; Ross and Cardone, 1974; Wu, 1979; Toba and Chaen,

1973; Monahan and O'Muircheartaigh, 1980,1986]. Fractional coverage (W) has been typically

related to wind speed (U) with the form W= otU _. The values of ct and B vary with geographic

location, air and sea temperature as well as wind speed range. These relationships remain noisy,

despite attempts to f'me tune particular data sets, due to the dynamic nature and interdependence of

the many parameters involved in whitecap formation. Whitecap coverage is primarily dependent



on wind speed,butalsoonotherfactorssuchasfetch andduration[Cardone,1969],water

temperature[MiyakeandAbe, 19481, air temperature, stability of the lower atmosphere defined by

the air/water temperature differential [Monahan and O'Muircheartaigh, 19861, salinity [Monahan

and Zietlow, 19691 and even surface tension variations due to the presence of organic films

[Garrett, 1967]. A slightly different approach by Wu [ 1988] relates whitecap coverage to wind-

friction velocity, being proportional to the square root of the wind stress which depends strongly

on atmospheric stability conditions. Bortkovskii and Novak [ 1993] assessed whitecap and foam

coverage with particular dependence on the sea surface temperature which effects sea water

viscosity and wind friction.

In addition, defining a threshold between white water and nonwhite water events is a difficult

process and usually depends on a subjective interpretation. Further complexities can arise, such as

the increase in foam streak-to-whitecap ratio with wind speed above 9 m/s [Ross and Cardone,

1974]. As the foam streak approximates a single bubble layer with a low reflectance contribution

that is close the threshold, a greater error can be induced in the estimate of the augmented

reflectance contribution at higher wind speeds.

To date, the optical influence of whitecaps on the upwelling water-leaving radiance has been

estimated by utilizing and combining the work of different researchers as described above. In this

paper, a measurement system deployed from a ship is used to directly determine the augmented

spectral reflectance and fractional coverage of whitecaps in the field. Our measurement system

provides spectral reflectance data from individual whitecaps - as they grow and decay - and, by

integrating over longer periods of time, estimates of the fractional coverage and augmented

reflectance contribution to the water-leaving radiance can be determined. The principal reason we

undertook the present investigation was to see if the Frouin et al. [ 1996] spectral measurements in

the surf zone were applicable to real oceanic whitecaps. A secondary motivation was to validate

the whitecap reflectance versus wind speed relationship proposed by Koepke [ 1984] [Gordon and

Wang 1994bl.



Instrument System

The whitecap reflectance measurement system is described in detail elsewhere [Moore et al.,

1997]. The system consists of a 6-channel radiometer with narrow field of view and nominal l0

nm bandpasses at 410, 440, 510, 550, 670 and 860 nm. It is held over the water surface by

means of a boom extended from the bow of a ship providing an unobstructed view of the water

surface. At the same time a cosine collector with matching wavebands measures downwelling

irradiance so that the reflectance of the water surface can be calculated. A TV camera is mounted

by the radiometer to provide a visual reference, and whenever the radiometric data is acquired the

associated video frame is time and date marked and recorded onto video tape to assist in later

analysis. Air and water temperature, wind speed and direction are measured simultaneously with

the radiometric data at a rate of -7 times a second continuously for about 30 seconds (providing

200 contiguous samples), after which global positioning (GPS) data, universal time, and location

are recorded. This acquisition sequence is repeated until a time determined by the operator. This

radiometric rate allows many sample points of an individual whitecap to be captured as well as

providing an adequate data set over a time period of reasonably consistent sea state and sky

conditions.

Once the system has been installed on a ship, only periodic measurements of the dark current

are required. This requires bringing the radiometer in from the boom and covering both the

radiometer and the deck cell with light tight caps. This is necessary only when significant

temperature changes are encountered such as when conditions change from early morning to noon,

or from dark, overcast, rainy conditions to bright sunshine. The radiometer can also be angled up

to 20 ° from nadir in order to minimize the effects of specular sun glitter and bright sky reflections.

Data Description

Data from two different cruises are presented in this paper. The data acquired from the first

cruise is used to introduce the data reduction process, consider the difficulties in radiometrically

defining white water events and to investigate the effects that low solar elevation, wind direction,



specularsunreflectionandsky conditionshaveon theestimateof fractionalcoverageandon the

augmentedspectralreflectancecontribution. In thesecondcruise,datawasacquiredin theopen

oceanandisusedto providepracticalmeasurementsof theaugmentedreflectancecontribution

neededtbr oceancolor andatmosphericcorrectionalgorithms.

For thefirst cruise,thewhitecapradiometersystemwasdeployedin thespringof 1996on the

NOAA ship,R/V Malcolm Baldrigefor a 2l-day shipcruisefrom Miami to atestlocationin the

Gulf of Mexico,approximately70milesoffshorefrom CedarKey (Florida)in theApalachicola

Bay. Thelocationprovidedrelativelywarm waters(-16 - 17 ° C) with a number of cold fronts

moving down off the continental mainland, resulting in variable conditions. These fronts usually

lasted a couple of days bringing strong winds (sometimes as high as 18 m/s) and lowering the air

temperature to about 12°C. The occurrence of an unstable atmosphere and good winds provided

an interesting whitecap data set.

The second cruise involved a -6,000 km transit through equatorial waters of the Pacific Ocean

from Manzanillo, Mexico to Honolulu, Hawaii. This 13-day cruise took place in November 1996

abroad the NOAA ship R/V Ka'imimoana. Conditions were more consistent with air/water

temperature and wind speed/direction changing only by a relatively small amount over time. Fetch

was typically greater than 1000 km and duration could be considered unlimited. Data was acquired

far from land and for the most part, water temperature was -22-23°C with air temperature -20-

23°C. Wind speeds ranged from -8 rn/s to -13 m/s and wind direction changed from an initial

northerly direction at the beginning of the transect to an easterly and southerly direction as the

Trade winds were crossed. The sky conditions were mainly broken and scattered with some

overcast periods.

The data used in the following section was acquired during one particular cold front passage

during the first cruise in the Gulf of Mexico. The front approached in the morning with a

completely overcast sky. Wind speed was initially -6 rrds from the south east but at about 10:40

am the wind changed direction to the north northwest with wind speed increasing to about 15 m/s

(gusting to 18 m/s) within 15 minutes. The water surface which had been relatively 'fiat' with a



waveheightof about 1-2ft (30- 60cm) becameruffled with manysmallwhitecapsappearing.

As thedayprogressedthewhitecapsbecamelargerbut fewerin numberasthewaveheight

increasedandaswell begantodevelop.Although therewerelull periods,thewindspickedup

againduring thenight blowingbetween10to 15rn/sandchangingdirectionto theeastasthefront

passed.By thenextday, thewaveheighthadincreasedto 2 m with aswell frequencyof 7-8

seconds.Thesky wasclearandtheshipadopteda rockingmotionwith theseaswell. Examples

of datatakenfrom bothdayswith similarwind speedsbutdiffering seastates,skyconditions,air

temperatures,duration,etc. arepresentedin thenextsection.

Data Reduction

Phase I Reduction Process

One half hour of data collected at the rate described above amounts to about a 1.5 megabytes

of data storage. To reduce this data, analysis software using Maflab was developed to partition and

separate the data matrix into radiometric data, environmental parameters (wind speed/direction,

air/water temperature) and GPS data. The radiometric data is then reduced to produce dark

background-subtracted and radiometricaUy-corrected reflectance values from the six up- and

downwelling channels. This radiometric correction process consists of three steps [Moore et al.,

1997] briefly reviewed here.

First, ratios of upwelling radiance to downwelling irradiance are formed from the dark

subtracted signals for each channel. These six ratios are then multiplied by a calibration factor

determined in the laboratory relating the channels in the radiometer to those in the deck cell in order

to yield reflectance measurements. This was established using a calibrated 1000W (FEL) quartz

halogen lamp source and a calibrated Spectralon reflectance plaque. The deck cell was positioned

50 cm in front of the source and measurements taken. For the radiometer, the reflectance plaque

replaced the deck cell, and the radiometer viewed the plaque from a 45* angle.



For the second step, a multiplication factor is required to correct bandpass differences between

the radiometer and deck cell and for differences in the fight spectrum between laboratory and

outdoor illumination conditions.

Thirdly, each channel of the deck cell must be corrected for solid angle response for

operation outdoors under 2n illumination due to the slight deviation in angular response of the deck

cell cosine collector from true cosine. Correction factors for different angular distributions of the

downwelling light field are required for various sky conditions that may be encountered. A set of

correction factors were established for different sky conditions such as overcast, or clear sky with

different solar zenith angles, to correct solid angle response.

After applying these corrections, the corrected data are presented as a time series in blocks of

200 water surface reflectance measurements along with wind speed/direction, air/water

temperature, upwelling radiance and downwelling irradiance data. The reflectance data are then

grouped into reflectance intervals; any reflectance spectra whose average value falls within a

predetermined reflectance interval is binned. In analysis of foam data obtained with the system in

earlier work [Moore et al.., 1997], the value of the reflectance at 860 nm was used as the binning

parameter rather than the mean spectral value used here. However, in estimating the fractional

coverage and augmented spectral reflectance, it was found that it makes no difference which

parameter is used.

For analysis of the data from the first cruise, the reflectances are divided into 48 intervals,

with high resolution reflectance intervals of 0.0025 reserved for reflectance values between 0.005

and 0.1. (First interval is 0.0 to 0.005). Above this, the reflectance intervals are incremented by

0.1 and continue up to 1.0. As will be seen later, the high resolution intervals used for the lower

reflectance values below 0.1 have been implemented in an attempt to accurately determine and

discriminate between white water and nonwhite water events. Reflectance intervals above 0.1

were primarily used to analyze the spectral characteristics of different foam types which may be

defined by their reflectance magnitude.



In the work by Frouin etal. [1996] in making spectral measurements of foam in the surf

zone, reflectance intervals were also used in an attempt to determine spectral variations with foam

type and thickness. The total reflectance was partitioned into 4 intervals (0 - 0.25, 0.25 - 0.4, 0.4

- 0.55, and any reflectance greater than 0.55). Koepke [1984] on the other hand required a

threshold between nonwhite water and white water in analysis of photographic images to determine

fractional coverage and the effective reflectance, which considers the drop in reflectance and

increase in area as a whitecap decays. To accomplish this, the white water threshold was set at 0.1

with the maximum reflectance in a particular photograph normalized to 1. These images were

acquired using a 6 cmx 6 cm Hasselbad camera angled between 45 ° and 60 ° degrees in viewing

the surface from a height of 30 m. This threshold was further complicated by the increased white

threshold towards the horizon due to increased Fresnel sky reflection. With the whitecap

radiometer used in this paper, the effect of sky reflection variation with viewing angle is drastically

reduced due to the small field of view of the radiometer optics (1 ° ), and with 0.0025 reflectance

resolution more accurate threshold information can be obtained.

After the reflectance data from each block has been grouped into reflectance intervals, these

reflectance intervals are added to previous blocks of similarly reduced reflectance data, resulting in

a set of reflectance intervals for the complete data matrix. UTC time is extracted and displayed at

the beginning of each block so that reflectance measurements can be correlated with water surface

events replayed on the VCR. The VCR (Sony EV-C 100 (video Hi8)) can be advanced frame by

frame in either direction with the time/date mark appearing on the bottom of the monitor

approximately every third frame. In this way, individual samples from whitecaps and their

different foam types can be radiometricaUy tracked.

Once all the data from a particular acquisition period has been reduced to this level, the spectral

reflectance values and the number of samples binned in each interval are stored along with the total

number of samples taken, mean air/water temperature, wind speed/direction readings and GPS data

from each block (200 samples) of the original data matrix.



Phase I Examples

In Fig. l(a) an example of a time series with two whitecaps passing under the radiometer is

shown. These whitecaps were acquired during the onset of the cold front described above. The

sky was overcast and the data were taken -11:00 am. Wind speed was -12 m/s, air temperature

16.2°C and water temperature 17°C. The 96 samples (from a block of 200) shown in Fig. l(a)

were acquired over a period of- 15 seconds. In this example, a large whitecap suddenly breaks

into view of the radiometer with thick white loam (sample point 11) reaching a peak reflectance of

-55%. Six traces are plotted representing the six radiometer channels (410, 440, 510, 550, 670

and 860 nm). The lower trace (symbols) corresponds to the 860 nm reflectance. Thick foam is

temporarily replaced by a region of submerged bubbles and thinner surface foam (-sample points

13, 14,15). Thick foam comes into view again at sample point 17. At sample point 20 and 21 a

thin layer of foam passes followed by some dense (not thick) older foam and stays in field of view

to about sample point 35. Sample points from about 35 - 56 show the reflectance of thinning

residual and fragmented surface foam. From 60 to about 75 the reflectance of the foam free water

surface is shown and is suddenly followed by another whitecap of smaller magnitude (sample

point 76) which continues to decay out to about sample point 96.

In Fig. l(b) the individual reflectance samples from this sample period have been binned into

reflectance intervals. The lower reflectance intervals correspond to the nonwhite water reflectance;

some are higher due to Fresnel reflectance from brighter regions of the sky, others are lower due to

shadowing by adjacent waves. The variation in the spectral profiles of each interval is partly due to

the small number of samples used. However, a common feature that stands out is the lower 860

nm reflectance. This is attributed to reflectance from submerged bubbles modified by the strong

absorption of water at 860 nm [Frouin et al., 1996; Moore et al., 1997]. (Other examples of phase

I data reduction into reflectance levels are shown in Figs. 2(b), 3(b) and 4(b) where larger data sets

of about 10,000 samples are used).



Phase II Reduction Process

In phase II, the reduced data from phase I are processed to determine fractional coverage and

the augmented spectral reflectance contribution. Correlations between these estimates and the

environmental conditions responsible for whitecap development can then be investigated.

Each reflectance interval, resulting from the reduction of a complete data matrix, is multiplied

by the fraction of reflectance samples that have contributed to that reflectance interval. This

weighted reflectance spectrum is the effective spectral reflectance contribution of that reflectance

interval (i.e. the contribution of that interval to the total reflectance). Repeating this for all

reflectance intervals and summing their effective reflectances together yields the total spectral

reflectance. This is equivalent to the reflectance observed in a satellite image pixel mapped onto the

ocean surface.

The total reflectance contains both white water and nonwhite water contributions. In order to

determine only the contribution of whitecaps and foam, the background water-leaving radiance,

sky reflectance, sun glitter and other nonwhite water contributions must be removed. The

background water color (and sky reflection etc.) has the greatest ntunber of samples being the most

frequently measured and since the presence of foam on the surface of the water increases the

overall reflectance signal, the optimal threshold must be at some reflectance interval above it.

However, reflectance intervals above the reflectance interval with the most number of samples may

contain both thin foam reflectance as well as sky reflectance contributions from brighter regions of

the sky. Also, reflectance intervals below this may contain thin foam reflectance contributions that

are in the shadow of an adjacent wave and may register as having a lower reflectance than a sky

reflectance contribution from an unshadowed foam free water facet. This is true for threshold

intervals near the reflectance interval with the most number of samples. This inability to

distinguish between white water and nonwhite water events places a limit on the accuracy with

which fractional coverage and augmented spectral reflectance contribution can be determined.

The estimate of fractional coverage and the augmented reflectance contribution is dependent

on choosing a reasonable reflectance threshold. Once an appropriate threshold has been chosen, it



is subtractedfromeachintervalaboveit. Thisdifferencein reflectanceisassumedto be due to

white water contributions only. The reflectance difference is then multiplied by the fraction of

samples that have fallen into that reflectance interval to yield the effective augmented spectral

reflectance of that particular reflectance interval. All the weighted reflectance intervals above the

threshold are summed to yield the (total) augmented spectral reflectance contribution. Fractional

coverage is estimated from the total number of white water samples divided by the total number of

samples and, notably, is not weighted by the magnitude of reflectance.

In the following examples, a range of plausible thresholds are implemented to demonstrate the

effects on the estimate of both fractional coverage and the augmented spectral reflectance

contribution from data acquired with similar wind speeds but under different sky conditions, solar

zenith angles, and sea states.

Phase II examples

Overcast Sky

Data presented in Figs. 2(a) - 2(d) were the result of 9,000 surface reflectance measurements

acquired over a period of -23 minutes as the ship covered a 4 kilometer path during the onset of the

cold front described above. Mean location was 29.05°N and 83.5 loW. During acquisition the

mean wind speed was I 1.86 m/s with a standard deviation of 3.6 rrds (gusts up to 18 m/s). The

wind was from the north between 350 ° and 0 °. Ship heading was originally ~ 170 ° during the first

half of the acquisition period and then passed through a southerly direction and settled on a north

westerly direction of 330 ° . The radiometer was nadir viewing and since conditions were overcast

there was no specular sun glitter. Air temperature was 16.2°C and water temperature 17.0°C,

resulting in a slightly unstable atmosphere. Other parameters taken from the ship's log were

salinity (35.027 ppt), barometric pressure (1015.4 mB), and relative humidity (93%). In this

example, during the onset of the cold front, many small whitecaps suddenly appeared on the

relatively flat and dark water surface. Duration was limited to ~15 minutes with whitecap

development and sea state measured during an abrupt transition period in weather conditions. The



resultingmeasurementsproducedhigh values of the augmented reflectance and fractional coverage

estimates.

In Figs. 2(a) - 2(d) the more interesting portions of the output of data processed in phase II are

presented. Figure 2(a) shows all the reflectance samples reduced to reflectance intervals. In Fig.

2(b) a histogram of the number of samples used to determine each reflectance interval is shown.

Remember that the fin:st 39 levels cover the mean reflectance spectral values between 0 and 0.1.

Above that the reflectance intervals are incremented in 0.1 steps causing the bump at interval 40.

In the histogram there seems to be no obvious distinguishing feature to identify the background

from the white water, but as mentioned above, a suitable threshold must be above the reflectance

interval with the most number of samples.

Figure 2(c) shows the total reflectance. The total reflectance spectrum peaks at 510 nm

suggesting a blue-green color and a maximum value of-0.06180. The nonzero value at 860 nm

(0.02412) is mainly due to the overcast sky being reflected at the water surface. The graphs in Fig.

2(d) show the augmented spectral reflectance contribution and an estimate of the fractional

coverage for different thresholds choices.

In Fig. 2(d) a range of reflectance intervals (intervals 16 through 23 and where interval 16

contains the greatest number of samples) are used as threshold reflectance intervals between white

water and nonwhite water events. In the resulting estimates of the augmented spectral reflectance,

the spectral shape has changed from that of the total reflectance. The spectral shape of the

augmented reflectance seems to vary somewhat from one choice of threshold interval to another

with exception of a common lower 860 nm value and a relatively flat region between 440 and 670

nm. The 860 nm value, as seen in previous data, is much lower than the other wavelengths.

For threshold intervals 16, 17 and 18 the fractional coverage estimates are particularly high

(37.2%, 22.5% and 14.3%) for this wind speed of 11.86 m/s. From threshold interval 19 through

23, the spectral shape has become more settled and appears to be relatively constant with the

exception of the 410 nm channel which appears to decrease with increasing threshold with respect

to the other spectral values. In this range of thresholds, the estimates of fractional coverage are



alsomoreplausible(9.5%,6.9%,5.3%,4.1%and3.7%). This spectralshapecontinuesfor

higherthresholdintervals(notshownhere)andeventuallybreaksdownwith thehighestthreshold

intervalsdueto asmallnumberof samples.

It is interestingto notethattheaugmentedspectralreflectancefor thesethresholdintervals(19

through23)maintainasmallpeakat 510nm althoughit decreaseswith increasingthreshold.

Increasingthethresholdmovestheanalysisinto higherreflectancelevelsandthereforeinto thicker

whitecapfoamtypes. Investigationof thespectralvariationof differentfoamtypeswith

increasingreflectance[Mooreet al., 1997] revealed a similar trend with the 510 nm value

decreasing while the 670 nm and 860 nm values increased. The 410 nm value was also observed

to decrease in the foam spectra.

The 510 nm reflectance maintains the highest value and is reminiscent of the total reflectance

spectrum which is predominantly comprised of non-foam water reflectance contributions. The

reflectance values of the wavebands in the visible region tend to equalize with higher threshold

choice. The augmented reflectance spectral profiles seem reasonable and explain the apparent

whiteness of whitecaps, where the channels covering the visible region are essentially equivalent

with an increasing hint of blue-green for lower reflectance intervals. This is similar to what is

visually observed; white thick fresh foam and blue-green thin foam where the background water

color penetrates through the thin bubble layers.

With a consistent spectral profile for the higher threshold intervals, the optimal choice

becomes difficult. However, it seems that threshold interval 23 is perhaps too far into the white

water realm and the can be ruled out as the optimum threshold choice. Threshold interval 19 might

be a reasonable choice but could contain some non-foam bright sky reflectance contributions. It

also has a particularly high 410 nm value that is not present when higher threshold reflectance

intervals are applied suggesting the presence of some non foam contributions. Being conservative,

the optimal choice seems to be around threshold interval 20 or even 21. The augmented

reflectances are 0.00315 and 0.00290 at 510 nm and 0.00169 and 0.00161 at 860 nm for

thresholds 20 and 21 respectively. The fractional coverage estimates using these thresholds,



"although a little high due to the inclusion of the thinnest foam types, are 6.9% and 5.3%

respectively.

In the augmented spectra for thresholds 20 and 21, changing the threshold by a small

reflectance of 0.0025 changes the fractional coverage estimate by 1.6% but only by -4).000186 for

the augmented reflectance in the visible (410 nm -550 nm), and by -0.00008 for the augmented

reflectance at 860 nm.

The upwelling signal, particularly in the lower threshold regions, is mixed with contributions

from brighter sky reflectances, thin foam layers and fragmented foam patches. As stated before,

there is no decisive definition of threshold; only a comprise between either obtaining a reasonably

pure white water spectrum and underestimating the augmented reflectance contribution, or

obtaining perhaps a more complete measure of the augmented reflectance contribution at the cost of

including some nonwhite water contributions. It is important to include the lowest reflecting and

thinnest foam types since they persevere longer than the thicker and more highly reflective foam

and as result have great statistical weight in contributing to the total augmented reflectance. This

threshold problem makes accurate determination difficult and somewhat subjective. However, it is

comforting that the augmented reflectance is a weak function of the actual choice of the threshold.

Clear Sky

In the next example, whitecap data was taken the next day (-9:05 am) under clear sky

conditions, and as described above, with a more developed sea. Wave height was about 2 m with

a periodicity of 7-8 seconds. Mean wind speed was 11.7 m/s with a standard deviation of 1 m/s

coming from the north west at about 340 ° . The ship heading was 355 ° and moving through the

water at 7 knots (2.6 m/s) covering a straight track of 4.3 km. Air temperature was 120C and the

water surface temperature was 16.5"C, resulting in an unstable atmosphere. Other parameters

taken from the ship's log were salinity (35.0895 ppt), barometric pressure (1019.9 mB) and

relative humidity (61%). This location (-29.15 ° N, 84.02* W) was approximately 20 km north and

56 km west of the location where the data during overcast conditions in Fig. 2 was acquired. With



wind speedcontinuallyblowing in the 10-15 m/s range for roughly a 24 hour period, the sea had

become more fully developed, producing a different whitecap morphology and foam distribution

from the previous day. Reflectance measurements included a larger proportion of foam streaks and

residual foam patches resulting from larger breaking waves although less frequent than in the

previous 'overcast' case.

In Fig. 3(a) the reflectance measurements reduced to reflectance intervals are shown and the

histogram of reflectance interval vs. number of samples is shown in Fig. 3(b). Noticeable

differences from the overcast sky condition are (i) the fighter distribution of samples about the

peak, and (ii) the much lower sky reflectance (-0.00276 at 860 nm). This is the result of a low

sun angle (30' above the horizon) and the viewing angle of the radiometer. The radiometer was

orientated to view the water surface at 20 ° from nadir in a direction opposite the sun in order to

minimize specular sun glitter in the measurements. As a result, the sky reflectance signal arriving

at the radiometer was from a region of the sky centered roughly 80 ° from the sun where the sky is

dark relative to overcast conditions.

With regard to the histogram of reflectance interval vs. number of samples, it may be tempting

to fit a symmetrical distribution about the mode and use the difference between the fit and the

histogram to identify any augmentation. But this would assume an equal probability of darker and

brighter sky reflectances contributing to the distribution from a symmetrical distribution of wave

orientations of the water surface reflecting a proportionately gradiented sky. It is not that simple

since the wind typically blows from one direction causing the waves to progress across the surface

in rows creating a preference for surface angle orientation and skewing any symmetry in the

distribution. In addition, in the presence of low sun angles, the distribution of reflectance intervals

is further complicated by the specifk illumination direction of the sun reflected from waves and

whitecaps. Even if the distribution of reflectance intervals vs. number of samples were perfectly

symmetric, the finite bandwidth of this distribution indicates an accuracy limitation. Within this

envelop there is an indiscriminate region were sky reflectance signal overlaps with thin foam

contribution thus concealing any obvious threshold.



In Fig.3(c) thetotal reflectancehasapeakat 510 nm but is not as prominent as in the overcast

data. This is most likely due to the ship being in a slightly different body of water. In Fig. 3(d)

the augmented spectral reflectance prof'des are shown for thresholds 4 through 9 (threshold 4 is the

mode). Following similar reasoning as in the overcast case, it seems that the profiles resulting

from the application of thresholds 6 and 7 are more realistic. The augmented reflectances are

0.00097 and 0.00085 at 510 nm and 0.00071 and 0.00059 at 860 nm for thresholds 6 and 7

respectively with fractional coverage estimates of 4.8% and 3.4% respectively.

It is interesting to note the relatively higher 440 nm value appearing in the augmented

reflectance spectra as it does in the total reflectance profile, whereas in the Fig. 2 data it is relatively

low in both the total and augmented reflectance spectra with the application of higher thresholds.

This difference is due to measurements taken in slightly different water bodies and to the inclusion

of the foam free water color (sky reflection and water-leaving radiance) in measurements of the

thinnest foam types and submerged bubbles.

In this example, the augmented reflectance at 670 nm using threshold 6 is marginally highest

and the 860 nm has substantially increased in comparison with the overcast example. Also, the

augmented reflectance contribution at 670 appears to be consistently higher than at 550 nm,

whereas in the overcast example both the 550 and 670 nm values are essentially equal. The

augmented reflectance profile suggests a stronger influence from the longer wavelengths. This

effect is even more pronounced in the following example.

Clear Sky Low Sun

In Figs. 4(a) - 4(d), data was acquired an hour earlier (at -7:50 am) on the same day as the

data presented in Fig 3. The sun was lower in the sky at approximately 10° above the horizon and

at-80 ° azimuth from true north. Mean wind speed was 12.1 m/s with a standard deviation of 1.3

m/s during the acquisition period. The wind was out of the north west (325*) and the ship

heading was 355 °. Air temperature was 12.6°C and water surface temperature 16.55°C (unstable

atmosphere). Other parameters from the ship's log were salinity (35.0445 ppt ), barometric



pressure(1019.I mB) andrelativehumidity(62%). As in theprecedingexample, the radiometer

was angled 20 ° away from the direction of the sun to reduce the possibility of sun glitter and

specular reflection. The locadon (29.11 ° N, 84.02 ° W) was approximately 2.7 miles due south of

the location where the data in Fig. 4 was taken. During this period of- 18 minutes, 7,000 surface

reflectance samples were taken. The whitecap development and foam distribution during this

acquisition period was similar to the 'clear sky' case, only the sun elevation was smaller.

Figure 4(a) shows the reflectance intervals. In the histogram of the number of samples vs.

reflectance levels in Fig. 4(b), the shape of the distribution is similar to that in Fig. 3(b). The

distribution rises sharply and falls with a slight broadening towards higher reflectance. The total

reflectance shown in Fig. 4(c) is somewhat higher than in Fig. 3(c) data suggesting a possible

higher white water contribution. The spectral shape is similar with the exception of relatively

higher 410 and 440 nm values. This can be attributed to a spectraUy different angular distribution

of the downwelling light field. The sky was comprised of a prominently yellow reddish maximum

at high zenith angles due to the low sun, and a very rich and dark blue sky toward the zenith -

typical of a clear early morning as the sun rises. Horizontal waves and waves inclined away from

the low sun reflect the predominantly very blue sky and are most frequently measured by the

radiometer. This bias towards more blue measurements accounts for the different shape of the total

reflectance profile in this example. However, when plausible threshold reflectance intervals (Fig.

4(d)) are applied in order to estimate the augmented reflectance contribution, the opposite is

observed with a bias towards the longer wavelengths.

At threshold interval 5 (mode of the histogram) in Fig. 4(d), the augmented reflectance values

at the shorter wavelengths are lower with respect to the longer wavelengths than they were in the

total reflectance profile. Using the same criteria from the two previous data sets, white water

contribution should begin to appear above the background reflectance in the region of reflectance

intervals 6, 7, 8, 9 and maybe 10. Moving up to threshold interval 6, the resulting augmented

reflectance spectrum is more accentuated with even lower values towards the blue end and higher

values in the red. This is the result of the low sun angle ( l0 ° above the horizon). The augmented



reflectancespectrafor threshold6 yieldsa410nm value(0.00203)thatis lessthanthat at860nm

(0.00265), and with a maximum at 670 nm (0.00313).

Although the spectral shape of the augmented reflectance profiles from thresholds 6, 7 and 8

are somewhat similar, their fractional coverage estimates appear to be too high - 18.5%, 10.9%

and 7.9%. Threshold 9 has a more reasonable fractional coverage of 6.0% with an augmented

reflectance contribution -0.0017 in the visible. Threshold 10 has a fractional coverage of 4.8%

and an augmented reflectance of-0.0015 in the visible. Comparing the fractional coverage and

augmented reflectance contribution estimates with the previous example taken under similar

conditions (wind speed, air/water temperature, sea state) but with higher sun angle, shows the

estimates in this example are much higher; nearly 3 times the augmented reflectance and more than

twice the fractional coverage using similar thresholds. These augmented reflectance profiles and

their particularly high estimates of fractional coverage suggest that the higher augmented reflectance

values at the longer wavelengths may include specular reflections from foam free water facets,

although an additional explanation is provided below.

Comparing Figs. 3(d) and 4(d) shows that the augmented reflectance becomes relatively more

enhanced in the red and near infrared for the lower solar elevation. Although whitecaps are usually

modeled as lambertian reflectors, we believe that this reddening of their reflectance with reduced

solar elevation provides indirect evidence of their nonlambertian nature. As the solar elevation is

decreased, the contribution to the incident irradiance from the diffuse sky light is enhanced at the

expense of the direct sun light. For low solar elevations, the incident irradiance in the blue is

almost totally from diffuse sky light. In contrast, the reverse is true in the red, most of the

incident irradiance is direct sun light. Let us assume that the whitecaps are lambertian, i.e., they

have reflecting properties similar to sheets of white paper floating on the water, and that their

reflectance is spectrally neutral throughout the visible. In the red, whitecaps on the side of the

waves away from the sun or in the troughs of the waves receive little or no illumination, i.e., they

are shadowed from the direct sun. In contrast, in the blue, where the illumination is diffuse, all

whitecaps will be illuminated. Thus, in this example, the augmented reflectance would be expected



to increase from red to blue because fewer whitecaps are illuminated with red light. In fact, the

experimental result [Fig. 4(d)] is exactly the opposite!

Further evidence of the nonlambertian character of whitecaps can be seen by comparing Figs.

3(a) and 4(a). The highest reflectance levels in these figures will be due to the thickest-youngest

foam patches. In this case, removal of the ocean background is not relevant to measuring their

properties. The reddening of the spectrum in the visible for these foam patches from Figs. 3(a) to

4(a) is very evident. Figure 4(a) shows a strong variation in reflectance with wavelength, a

surrogate here for the variation in the angular distribution in of the incident irradiance. In contrast,

Fig. 3(a) shows a much more neutral or bluer reflectance for the most-reflective whitecaps. Thus,

even for the brightest whitecaps, the dependence of reflectance on the angular distribution of the

incident irradiance is clear: they are nonlambertian. However, note that the measurements we have

presented here cannot shed light on the actual bi-directional reflection distribution function (BRDF)

of the augmented reflectance. The only conclusion we can make regarding the BRDF is that the

nadir-viewing augmented reflectance spectrum for diffuse illumination [Fig. 2(d)] and for solar

elevations > about 30 ° are similar.

The nonlambertian nature of whitecaps and its relationship to the solar elevation is easy to

understand. Whitecaps are isolated volume scatterers, and at low solar elevations the solar beam

can enter the sides as well as the top of the whitecap and be scattered out toward the zenith. In

contrast, for high elevations or for diffuse illumination relatively fewer photons will enter the

sides, and this results in a lower overall reflectance.

Open Ocean Data

The data used here were acquired from a transect of the Pacific Ocean from Manzanillo,

Mexico (19.03 ° N, 104.20 ° W) to Honolulu, Hawaii (21.20 ° N, 157.55 ° W). Only data which

were acquired under relatively constant and overcast conditions were used to model augmented

reflectance with other parameters such as wind speed etc. These data sets have a well behaved



backgroundin termsof radiometricallydetermininga thresholdbetweenwhite waterandnonwhite

waterevents. Overcastconditionsalsoprovideabetterdownwellinglight descriptionfor

correctionof thedeckcell cosinecollector[Moore et al., 1997]. Other whitecap data were acquired

during broken sky and scattered cloud conditions, but have not been included in the modeling.

The threshold is more difficult to define for these data sets, due to the large variability and random

nature of the downwelling light field and its effect on surface reflectance measurements.

The data used are from 4 different days and locations during the transect. Wind speed was

relatively constant and remained within a range of 1-2 m/s for days at a time. Reflectance data was

acquired for wind speeds between -8 - 13 m/s. Stability of the lower atmosphere, def'med by the

air temperature / water temperature differential, varied from neutral to slightly unstable. Other

parameters such as salinity, humidity and barometric pressure were also recorded for possible

correlation.

The reflectance interval resolution was increased from the previous value of 0.0025 to 0.00 I.

While more threshold choices were generated as result of the higher resolution, it was primarily

implemented to monitor background stability by observing the distribution of reflectance intervals

verses number of samples. In cases where the sun came out from behind the clouds or a cloud

blocked the sun, the foam free water surface reflectance either decreased or increased. This was

observed as a broadening (sometimes with bumps) in the distribution of reflectance interval vs.

number of samples for given data set.

In Fig. 5 the augmented reflectance contribution from 17 data sets is presented as a function

of wind speed. Each of the 17 augmented reflectance data points were acquired from an average

acquisition time of 45 minutes (or -800 m 2 surface area). For clarity, the augmented reflectances

from wavebands 410 nm through 550 nm (ARC410.55o) have been averaged since their values vary

only slightly with respect to one another. The augmented reflectance at 670 um (ARC_0) which

also varies only slightly with the other visible wavebands, and the augmented spectral reflectance at

860 nm (ARC_) which is always distinctly lower than the visible wavebands are shown. To

relate augmented reflectance to wind speed a power law relationship has been applied in the same



vein as previous authors have related fractional coverage to wind speed [Blanchard, 197 I; Ross

and Cardone, 1974; Wu, 1979; Toba and Chaen, 1973; Monahan and O'Muircheartaigh,

1980,1986]. For a given wind speed the augmented reflectance contribution in the 410-550 nm

region can be related to the wind speed with a correlation of 0.702 by:

ARC4to.55 o = 9.648 x 10.7 U z7"r7

where ARC410.550 is the augmented reflectance contribution as described above and U is the wind

speed in meters per second. Thus, the wind speed accounts for about half of the variance in

ARC4_o.55o. For the augmented reflectance contribution at 670 nm and 860 nm we have:

ARC67 o = 1.131 x 10.6 U 2"698

and

ARCs6 o = 1.302 x 10 .6 U 's45

with correlation factors of 0.699 and 0.647, respectively. Data taken during scattered and partly

cloudy conditions, although not used in determining the above relationship, are also shown in Fig.

5. These data were acquired with sun elevation greater than 50 ° . Reducing this data was more

complex due to a variable threshold but the results are similar to the data acquired under steady

overcast conditions with a well defined threshold.

In Fig. 6 the respective fractional coverage estimates are plotted as a function of wind speed.

The distribution of tractional coverage estimates for a given wind speed appear to be more scattered

than for augmented reflectance.

In Fig. 7 the relationship between augmented reflectance contribution (ARC,zo.55o) and

fractional coverage can be expressed as a linear relationship with a correlation of 0.694 given by:



ARC_t,,.55,_ = 9.252 x 10 .3 W + 0.000195

where W is the fractional coverage.

A scatter plot of the percentage drop in augmented reflectance from ARC_o.550 to ARCs6, _ is

shown in Fig. 8. A linear fit is applied between the data points to indicate an increasing trend in

the drop off between ARC_0.55o and ARCs6 o with wind speed rather than to establish a model, as

the correlation is very low, 0.359. However, the data indicate that for wind speeds in the range 8-

12 m/s the percentage drop off between ARC4_04so and ARCs60 is approximately 15 - 25%.

Possible correlations between the augmented reflectance and other parameters such as water

temperature, air temperature, stability of the lower atmosphere, humidity, salinity, barometric

pressure, wave height, sea swell were investigated. No correlations could be established mainly

due to the small variation in the parameters during the transect.

Discussion

In this paper we have shown examples of whitecap spectra of different foam types and

reflectances, both from individual whitecaps and as an integrated sum over a period of time

expressed as the augmented reflectance contribution and fractional coverage. From the first cruise,

estimates of the augmented spectral reflectance contribution and fractional coverage have been

obtained from measurements taken under different sky conditions and sea states but with similar

wind speeds in order to highlight the variability of whitecap formation and the difficulties in

providing accurate information on the optical influence of whitecaps. From the second cruise,

estimates of augmented spectral reflectance and fractional coverage acquired during overcast skies

and more consistent weather conditions with essentially unlimited fetch and duration have been

derived for ocean color satellite waveband correction and atmospheric correction algorithms.

Of particular importance is the determination of the threshold required to accurately determine

augmented spectral reflectance contribution and fractional coverage. Despite the application of high



resolutionwhitewaterthresholdreflectanceintervals,thethresholdchoiceremainsdifficult and

somewhatsubjective.Regardlessof thethresholdresolutionthatmaybeapplied,thevery wave

natureof thewatersurfaceandthedistributionof thedownwellinglight field creates an inseparable

and indiscriminate region between foam and foam tree contributions. As mentioned earlier, the

reflectance of foam in the shadow of an adjacent wave may result in a lower reflectance than a foam

free water facet reflecting a bright region of the sky. Choice of threshold is further compounded

since the thinnest foam types, which are close to the threshold reflectance, are very important due

to their long endurance. Without adequate discrimination of the thinner foam type, the estimation

of fractional coverage and augmented spectral reflectance contribution will always incur some

error. Utilization of a higher threshold resolution and the subsequent inclusion of the less

reflecting and thinnest foam types results in fractional coverage estimates that are roughly 3 times

higher than that reported by other researchers [Blanchard, 1971; Ross and Cardone, 1974; Wu,

1979; Toba and Chaen, 1973; Monahan and O'Muircheartaigh, 1980,1986]. The ratio of the

augmented reflectance contributions in the visible to the fractional coverage estimates determined

with this system results in an effective reflectance of - 1.25%. This much lower effective

reflectance than the 22% determined by Koepke [ 1984] gives an indication of the greater quantity

of thin foam and foam streaks that have been included in these measurements.

From the data used in this paper, the fractional coverage has been observed to vary by a larger

amount than the augmented reflectance contribution in going from one threshold interval choice to

another. This is due to the def'mition of tractional coverage which is not weighted by reflectance,

and as result, the thinnest foam patches are assumed equal in reflectance to the more highly

reflecting thick, dense foam types. The augmented spectral reflectance contribution is the more

meaningful measurement for satellite observations whereas fractional coverage must be combined

with reflectance data to achieve the same result.

Examples from the first cruise in the Gulf of Mexico reveal the dependence of whitecap

formation on parameters other than the wind speed measured at the time of observation. The

examples described from the first cruise all had similar wind speeds. Changing weather conditions



suchasduring theonsetof acold front producedhighervaluesof augmentedreflectanceand

tractional coverage ('overcast') than when conditions had been consistent lbr a longer period of

time ('clear sky', "clear sky low sun'). For the "overcast' example, the lower atmosphere was

essentially neutral (AT = T_r - Tw,_ = -0.8°C) and produced high augmented reflectance and

fractional coverage estimates. By the next day, the sea state under the intluence of conditions of

greater duration produced augmented reflectance and fractional coverage estimates that were

roughly 1/3 those obtained during the onset of the cold front, despite the atmosphere being

unstable (i.e. AT = T_ - T,,,,,_ = --4°C). The whitecaps visually appeared different to those in the

'overcast' case with large breaking waves, although less frequent, and with more residual foam

patches and foam streaks that were essentially absent in the 'overcast' case. Nevertheless, one

would expect the opposite result with greater whitecap influence during unstable atmospheric

conditions and less during neutral conditions. On the other hand, the augmented reflectance and

fractional coverage for the 'clear sky low sun', which had similar whitecap and foam conditions to

the 'clear sky' case, produced values roughly twice the 'clear sky' values due to the effects of the

low sun. The dependence on sea state, wind variations with rising or falling trend, change in wind

direction, minimal fetch and duration along with specular sun reflections, whitecap BRDF effects,

and low sun angles are responsible for these differences in fractional coverage and augmented

spectral reflectance for similar wind speeds. The data from the Gulf of Mexico was taken roughly

1 I0 km offshore which is an adequate fetch for 12 m/s wind speeds [Ross and Cardone, 1974].

The estimate of the augmented reflectance from the 'clear sky' case, which was acquired under sea

state conditions with adequate fetch and duration, and under illumination conditions that were not

particularly extreme (sun elevation of 30°), produced similar results to the open ocean data taken in

the Pacific.

Another interesting aspect resulting from these examples is the spectral change in the

upwelling signal during low sun angle. The spectral variation in estimates of the augmented

reflectance contribution seems to be dependent on sea state and the whitecap morphology. In Fig.

2(d) the decrease from the 440 nm to the 861) nm value is -41¢,. from observation of many small



whitecapsandvery few residualandfragmentedfoampatches.FromFig. 3(d) thedrop in

augmentedreflectancefrom440 nmto 860nmis -28% from observationof a few largewhitecaps

butmostlyresidualandpatchyfoam. We attributethesignificantchangein thespectralvariationof

whitecapreflectancefrom the"clearsky' to the "clearsky low sun'examplesto thenonlambertian

natureof thewhitecaps(theBRDFeffect). This effectcouldalsoinfluencethemagnitudethedrop

from 440to 860nm.

Sincethelow sunhasthis influenceon theaugmentedreflectance(andfractionalcoverage),

thewinddirectionwith respectto thesunbecomesan importantconsideration.Thelongitudinal

axisof waves(andwhitecaps)aremoreor lessperpendicularto thedirectionof thewind. In the

'clearsky low sun' case,thewindis from thenorth-westat 325° with thesunat 80° azimuthwith

respectto truenorth. This resultsin whitecapsandthecrestsof wavesbeingilluminatedat -25°

incident angle (azimuth). One might expect a maximum effect if the wind had been from the west

at 260 ° or perhaps from the east at 80 ° azimuth and a minimal effect with the wind from the north at

350 ° or south at 170 ° azimuth.

The goal of this study is to determine the augmented reflectance contribution from whitecaps

as viewed from satellites and, in particular, its spectral dependence. Useful satellite data of the

ocean is taken around solar noon and from cloud free regions. The low sun angle examples (10 °

and 30 ° above the horizon) used here can be considered extreme conditions and are not frequently

encountered. However, it brings attention the effect low sun angle has on the augmented

reflectance contribution. This effect may have particular importance for higher latitude waters both

north and south of the equator where, during the winter months or even in higher latitudes in the

summer months, the sun maintains a low angle above the horizon at around midday. For higher

sun elevation, the BRDF effect (although substantially reduced) may still exist. These high latitude

waters are particularly prolific as regards phytoplankton blooms, triggered by seasonal nutrient rich

cold upwellings. They are often windy areas with an abundance of whitecaps and a bias of the

reflectance towards the yellow-red end of the visible spectrum, with low sun angle, brings

attention to the 670 nm waveband near the phytoplankton fluorescence peak at 685 nm. The



ModerateResolutionImagingSpectroradiometer(MODIS) sensor[Salmonson,1989]will be

capableof estimatingthis phytoplanktonfluorescencesignal[Letelierand Abbott, 1996]. This fact

adds to the importance whitecaps may play in these higher latitudes. And of course, the high

values at 670 and 860 nm at lower sun angles, from a combination of whitecaps and foam free

waves, could complicate atmospheric correction algorithms unless adequately characterized.

The spectral characteristics of the augmented reflectance tbund in both the Gulf of Mexico and

from the Pacific Ocean seem to possess some spectral characteristics that are related to the water

color properties in which they were formed. In Fig. 9 examples of the nonwhite water spectral

profiles and their augmented reflectances from both water bodies are shown. Both examples were

taken under overcast sky conditions. For Gulf of Mexico waters, the augmented reflectance from

threshold interval 20 in the 'overcast' case is used and the augmented reflectance and the nonwhite

water spectrum have distinctly lower 410 nm values than their respective 440 nm values. For the

very blue and clear Pacific Ocean waters, the 410 nm value is higher than the 440 nm value in both

the augmented reflectance and nonwhite water spectral prof'fles.

The augmented reflectance profile in Fig. 9 for the Pacific Ocean has been complied by

averaging the normalized augmented reflectance of each of the 17 data samples used in earlier

modeling. The difference between each channel of the mean augmented reflectance profile shown

and the mean ARC,_o_sso is +2.9%, -6.0%, +6.1%, -3.1%, -2.4% and -21.6%. The standard

deviation for each waveband over the 17 data points is typically less than, or about equal to, the

size of the symbols in Fig. 9. For the augmented reflectance from the Gulf of Mexico the

difference between each channel and its ARC_t0.55 o is -4.5%, -1.8%, +7.0%, -0.8%, -2.1% and -

42.2%.

In both cases, the augmented reflectances are similar with the exception of the 410 and 860

nm values. The 860 nm value is lower in the Gull" of Mexico example due to a different type of

wave breaking (many small whitecaps suddenly appeared at the onset of a cold front yielding very

high augmented reflectance and fractional coverage estimates). Although the 410 nm value of the

augmented reflectance seems to be related to the water in which it was formed, the 510 nm value



doesnotandwouldappearto beindependentof watercolor type. A similarly low 410nm value

wasobservedin foamdatageneratedby aship's wakeincoastalwatersoff thecoastof Southern

Calitomia [Moore et al., 1997]. The low 410 nm value may be influenced by the higher

absorption properties of coastal waters at the shorter wavelengths, but the enhanced absorption

alone cannot explain this effect. Initially it was thought that this coupling between the augmented

reflectance and the water type in which the white water is formed might be explained by the

inclusion of very thin foam types where a good proportion of the background water color is also

measured. But this does not explain the apparent indifference of wavebands above 410 nm (and

perhaps 440 nm) to the foam free background water color.

Although most of our open ocean analysis utilized only data acquired during overcast

conditions (to facilitate more accurate estimation of the background water reflectance threshold, and

to eliminate sun glint, which is easy to mistake for thin foam), some data for partly cloudy and

clear skies were examined. This partly cloudy/clear sky data possessed an augmented reflectance

spectrum similar to the overcast cases, as well as similar values of ARC_I0.550 (Fig. 5). Thus, we

believe that our ARC results should be reasonably representative of clear sky situations, and thus

useful for estimating the whitecap contribution to the reflectance measured by ocean color sensors.

Conclusions

To summarize, spectral characteristics found in the augmented reflectance can be influenced by

a number of factors such as sky condition (e.g. bright horizon and overcast sky), solar elevation,

sea state: type of wave breaking and direction of wave breaking (particularly at low solar

elevation). The spectral profile of the augmented reflectance contribution may even be dependent

on the color properties of the water body in which the whitecap forms, since the detection of very

thin foam types include upwelling water-leaving radiance contributions. Despite the inaccuracies in

determining the white water threshold, the spectral profile of the augmented reflectance remains

consistent over a large number of reasonable threshold choices. Threshold determination is

inherently complicated and subject to some error due to the overlap of white water and nonwhite



water reflectance contributions. For most applications, any subtle spectral characteristics found in

the estimates of the augmented reflectance, besides the distinctive lower 860 nm value, are

overshadowed by the inaccuracy in determining the correct white water to nonwhite water

threshold.

We have determined the augmented reflectance contribution in the open ocean for the 410 -

550 nm range to be 0.00031 at a wind speed of 8 m/s, 0.00058 at 10 m/s and 0.00096 at 12 m/s

with a standard deviation of 0.000108. These results are somewhat lower than previously derived

values of whitecap optical influence [Koepke, 1984; Gordon and Wang, 1994b]. Using Koepke's

effective reflectance of 22% and the fractional coverage determined by wind speed for water

temperature above 14°C [Monahan and O'Muircheartaigh, 19801 yields values that are greater than

4 times our values at 12 m/s and roughly 3 times at 8 m/s. Applying the fractional coverage

relationship which takes into account atmospheric stability [Monahan and O'Muircheartaigh,

1986], our results are still lower even when assuming a very stable atmosphere. Also the 860 nm

value, which may be an indicator of the type of wave breaking responsible for the amount and

depth of bubbles forced into the water column, is found to be 15%-20% lower than the optical

influence of whitecaps in the visible for wind speeds 8 - 12 m/s in the open ocean, i.e., half of that

observed by Frouin et al. [ 1996] in the surf zone. We have ascertained the augmented reflectance

contribution at 860 to be 0.00026 at wind speed of 8 m/s, 0.00046 at 10 rn/s and 0.00073 at 12

rn/s. This implies a lower contribution from whitecaps at 860 nm (-5.6 times lower for wind

speeds at 12 rn/s and -3.8 times lower for wind speeds of 8 m/s using the Koepke [ 1984] effective

reflectance of 22% and the Monahan and O'Muircheartaigh [ 19801 wind speed to fractional

coverage relationship).

Koepke [ 1984] concluded that the optical influence of oceanic whitecaps was in tact less

important than had been previously assumed since his effective reflectance reduced the optical

influence of whitecaps by a factor of 2. Certainly from our direct measurements of the optical

influence of whitecaps and tbam in the 8 - 12 m/s wind speed range suggest that whitecap optical

influence can be considered to be even less important than Koepke's optimistic conclusion.



Notation

ARC_Lo.55o

ARC67o

ARC_6o

Tw_t_r

AT

U

W

mean augmented reflectance contribution from values at 410, 4_), 510 and 550 nm.

augmented reflectance contribution at 670 nm.

augmented reflectance contribution at 860 nm.

air temperature

water surface temperature

temperature differential (AT = T_- T_t_);

wind speed in meters per second

fractional coverage of whitecaps and foam
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Figure Captions

Fig. Ira). Time series of the reflectance of two whitecaps and their tbam types passing in view of

the radiometer.

Fig. l(b). Reflectance spectra of the two whitecaps of Fig. l(a) reduced to reflectance intervals.

Fig. 2(a). Reflectance spectra of -9,000 water surface reflectance samples from 'overcast' data

reduced to reflectance intervals.

Fig. 2(b). Histogram of the number of reflectance samples per reflectance interval for 'overcast'

data.

Fig. 2(c). Total reflectance of 'overcast' data (the sum of all weighted reflectance intervals). This

is equivalent to the upwelling signal detected by a satellite assuming no atmospheric

contribution.

Fig. 2(d). Augmented spectral reflectance contribution for a range of reflectance interval threshold

choices. The fractional coverage estimate for each augmented reflectance prof'de is shown.

For higher threshold choices the contributions in the visible region equalize with the exception

of the 410 nm and 860 nm contributions.

Fig. 3(a). Reflectance spectra of - 10,000 water surface reflectance samples from 'clear sky' data

(sun elevation of -30 ° above horizon) reduced to reflectance intervals.

Fig. 3(b). Histogram of the number of reflectance samples per reflectance interval for 'clear sky'

data.



Fig. 3(c). Total reflectance of 'clear sky' data (the sum of all weighted reflectance intervals). This is

equivalent to the upwelling signal detected by a satellite assuming no atmospheric contribution.

Fig. 3(d). Augmented spectral reflectance contribution for a range of reflectance interval threshold

choices. The fractional coverage estimate for each augmented reflectance profile is shown.

Note the higher 670 nm and 860 nm values due to the influence of the longer wavelengths

from a low sun.

Fig. 4(a). Reflectance spectra of -7.000 water surface reflectance samples from 'clear sky low

sun' data (sun elevation of -10 ° above horizon) reduced to reflectance intervals.

Fig. 4(b). Histogram of the number of reflectance samples per reflectance interval for 'clear sky low

sun' data.

Fig. 4(c). Total reflectance of 'clear sky low sun' data (the sum of all weighted reflectance

intervals). This is equivalent to the upwelling signal detected by a satellite assuming no

atmospheric contribution.

Fig. 4(d). Augmented spectral reflectance contribution for a range of reflectance interval threshold

choices. The fractional coverage estimate for each augmented reflectance profile is shown.

Note the much higher 670 nm and 860 nm and lower 410 nm values due to the influence of

the longer wavelengths from a low sun. The 410 nm value is lower than the 860 nm value for

all threshold choices.

Fig. 5. Augmented reflectance contribution for different wind speeds from open ocean data taken

in the equatorial Pacific. Data points of the augmented reflectance from different waveband

regions and their power law relationships with wind speed are shown. ARC,_,,.55,, is the mean



augmented reflectance of wavebands 410, 440, 510 and 550 nm. ARC67o and ARCs6 o are the

augmented reflectance tbr the 670 and 860 nm wavebands respectively. ARC_to.55 o PC /

scattered is for data taken under partly cloudy and scattered conditions (solar elevations -50 ° )

and not used in establishing power law relationship.

Fig. 6. Fractional coverage vs. wind speed for same data used in Fig. 5. A power law

relationship is applied although the fractional coverage values are more varied for a given wind

speed.

Fig. 7. Fractional coverage vs. mean augmented reflectance of 410, 440, 510 and 550 nm values.

A linear fit is applied with a reasonable correlation of 0.694. Wind speed is shown for each

data point.

Fig. 8. Percentage drop in the augmented reflectance between ARC_045o and ARC_6o for wind

speeds in the 8 - 12 rn/s range. The linear fit indicates an increasing trend with higher wind

speed.

Fig. 9. Augmented and nonwhite water reflectance prof'des normalized at 510 nm (not to scale)

are shown for data taken in the Pacific Ocean and the Gulf of Mexico. The augmented

reflectance for the Pacific Ocean is complied from all data presented in this paper used to

estimate the optical inlauence of whitecaps. Note the similarities in augmented reflectance

profiles regardless of the water color in which the whitecaps form. The 410 nm value seems to

be the exception and mimics the nonwhite water reflectance in both cases. The 860 nm value,

which may be used to indicate the type of wave breaking, is lower in the Gulf of Mexico data

due to type of whitecaps formed by the sudden arrival of a cold front.
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Abstract

We providean analysisof the influenceof instrument polarizationsensitivityon the radiance

measured by space-borne ocean-colorsensors. Simulated examples demonstrate the influenceof

polarizationsensitivityon the retrievalof the water-leavingreflectance(p_). A simple method for

partiallycorrectingforpolarizationsensitivity-- replacingthe linearpolarizationpropertiesofthe

top-of-atmospherereflectanceby thatfrom a Rayleigh-scatteringatmosphere -- isprovided and its

efficacyevaluated.It isshown thatitimproves p_ retrievalsas long as the polarizationsensitivity

of the instrument does not vary stronglyfrom band to band. Of course,a complete polarization-

sensitivitycharacterizationof the ocean-colorsensorisrequiredto implement the correction.



Introduction

The spectrM reflectanceof the ocean atmosphere system ismodified by the concentrationof

marine phytopla_ukton,microscopicplantsthat constitutethe first].inkin the marine food chain,l

The component ofthe spectralreflectancethatisdue to photons backscatteredo_t ofthe ocean (the

water-leavingreflectance)isusuallytermed the ocean color.The flightof the Coastal Zone Color

Scanner (CZCS)2,3 on the satelliteNIMBUS- 7proved the feasibilityofmeasuring the concentration

of the photosyntheticpigment chlorophylla (a surrogateforthe concentrationofphytoplankton in

the water) on a globalscale.Based on the CZCS success,severalfollow-onocean color missions

have been planned, e.g.,the sea-viewingwide-field-of-viewsensor(SeaWiFS), 4 and the moderate

resolutionimaging spectroradiometer(MODIS). s

The contributionofthe water-leavingreflectance,p_, to thereflectanceofthe ocean-atmosphere

system, pt,is _ i0%, the remainder being due to photons scatteredby the atmosphere and re-

flectedfrom the sea surface. Extraction of p,# from pt isreferredto as atmospheric correction.

As p_ is a small component of Pt, adequate atmospheric correctioncan only be effectedifpt is

accuratelymeasured, e.g.,a 5% errorinpt translatesinto-,_a 50% errorinp_ in the blue in waters

with low phytoplankton concentrations,and a largererrorin waters with higher concentrations.

The goalsetfor SeaWiFS and MODIS isthe retrievalof Pw in such waters with an uncertaintyof

+5%.

In ocean colorremote sensing,ithas been assumed implicitlythat the sensor is able to ac-

curatelymeasure (subjectto calibrationlimitationss) the radiance exitingthe top of the atmo-

sphere (TOA). However, the radiancereflectedfrom the ocean-atmosphere system can be strongly

polarized,z Since allradiometersdisplaysome sensitivityto the polarizationstateof the radiance

they intend to measure, generallya biased measurement willbe obtained. Although the ocean-

viewing radiometersare generallydesigned to have low polarizationsensitivity,e.g.,for SeaWiFS

and MODIS itwas specifiedthat the response vary by < 2% for alllinearpolarizationstatesof

the incidentradiance,some may not meet the designrequirements.Others,e.g.,the Spectroscopic

Imagers (SPIM) on the Midcourse Space Experiment (MSX), s were not specificallydesigned to



examine stronglypolarizedsources,and may be quite sensitiveto polarization.Because of this,

itisof interestto understand the influenceof residualinstrument polarizationsensitivityon the

retrievedproducts,and to devisea method to minimize it.This isthe focus of the presentpaper.

We begin by reviewing the measurements required to specifythe polarizationsensitivityof

a radiometer,show how the "measured" TOA radiance depends on the polarizationstateof the

light,and provide examples of the polarizationpropertiesof the TOA radiance. Next, we review

the atmospheric correctionalgorithm and use it to derivethe desiredwater-leavingradiance by

operatingitwith the radiance measured by the sensorifthe instrument'spolarizationsensitivity

isignored. Finally,we propose a simple algorithm for making an approximate correctionfor the

effectsof residualinstrument polarizationsensitivity,and providesome examples ofitsefficacy.

2. Polarization Sensitivity

2A. Sensor polarization sensitivity

We assume that the radiometer can be modeled as an opticalsystem, which responds in a

manner dependent on the stateofpolarizationof the radiance tobe measured, and a detectorwith

a response thatisindependent ofthe stateofpolarizationofthe radiance.The radiance isspecified

by the column vectorI,the Stokesvector,9-12

where

I = <ERE; + E,.E$.>,

Q = (ELE; - E,.E_.},

(1)
U = {ZlE$. + E,.E;},

V = i(ZlZ$. - E,.E;),

E_ and E, are the components of the electric field in any two orthogonal directions normal to the

direction of propagation, the superscript • indicates the complex conjugate, and the angle bracket

denotes the average over time. The first element of the Stokes vector, I, is the radiance that would

4



be measured with a detectorthatisinsensitiveto the polarizationstateof the field.We referto it

here as the radiance.The polarizationstateofthe radiationisdetermined by the other components

of I,forexample, the degree of polarizationof the radiationis

P = v/Q z + U 2 + V _ (2)

where 0 < P < i.The limitP = 0 correspondsto a completelyunpolarizedradiationfield,while

P = 1 corresponds to a completely polarizedradiationfield.Radiation fieldswith intermediate

values of P are partially polarized. Any field with a degree of polarization P can be represented as

a linear combination of an unpolarized field of radiance (1 - P)I and a completely polarized field

of radiance PI, i.e.,

(i)= 0 + "

0

Fieldsfor which V = 0 are saidto be linearlypolarized.

The actionof the opticalsystem on I isto produce a new StokesvectorI,_,given by

I,,, = MI,

where M is a 4 x 4 matrix (the MueUer matrix). The measured radiance, In, is the top element

of the column vector I,,_. The transform matrix M describes the action of the instrument on I. It

follows from the action of the instrument on the fields,

E, =A = (3)
Et ,,_ El A3 A_ El '

where E, and Et are the electric field components of the beam in the directions perpendicular and

parallel to a reference plane, respectively. This reference plane is arbitrary. It is defined using the

basis vectors i and ÷, respectively, parallel and perpendicular to the reference plane. The plane

itseff is formed by l and the direction of propagation of the radiance, ÷ x L Starting from the

Eq. (3) and the definition of I, Q, U, and V in terms of the fields, the derivation of M from A is

straightforward. 9'ta In what follows we will omit the exphcit dependence of I and M on wavelength

A for simplicity.

5



Viewing the earth,the sensorresponds to the StokesvectorItexitingthe top of the atmosphere

(TOA). Itisdefinedwith respectto a referenceplane determined by the propagation directionof

the light(specifiedby the polar angles8, _#)and the vertical,with Itand ÷t,respectivelyparallel

and perpendicular to thisplane. However, the transformationmatrix M is definedrelativeto a

referenceplane (t and ÷) fixedwith respectto the instrument.Ifthesetwo referenceplanes are not

coincident,then a transformation(rotation)of the Stokes vectorfrom one referenceplane to the

other has to be made. LettingIt• l = cosa, we haveI_

I,_= SR(a)It, (4)

where

(i0 00)cos2a sin2a 0
R(a)_= -sin2a cos2a 0 '

0 0 0 I

with c_measured clockwisefrom Itto tlookingtoward the source.Assuming that the detectoritself

isnot sensitiveto the polarizationstateof the light,Eq. (4) shows that the "measured" radiance

/m isrelatedto the components of the "true"stokesvectorItby

I,_ = MllIt+ M12(cos2aQt+sin2aUt)+ Mla(-sin2aQt+cos2aUt)+ M14Vt , (5)

where Mll, M12, M13 and M14 are the elements of the first row of the matrix M. For the radiance

backscattered to the top of the atmosphere, Vt _ 0 (refer to Subsection 2B), so I,_ in Eq. (5) can

be rewritten as

= MI Z, + M  (cos2a Qt + sin2a + M 3(- sin2a Q, + cos2a Ut) (s)

Clearly,the measured radiance I,_isnot It,I,_ depends on the characteristicsof the instrument

(M11, M12 and M13) and the characteristicsof the radiation(It,Qt and Ut). Of course,it is

desirableto have an idealinstrument with M being a unit matrix (M12 = Mr3 = 0 and Mtl =

1), i.e.,an instrument having no polarizationsensitivity.However, thisis not practical. All

instruments,unavoidably,have some polarizationsensitivity.On the other hand, ifthe degreeof

polarizationof the radiance receivedby the instrument iszero (Q_ = Ut = Vt = 0),the measured

radiance I,_willbe the trueradiance It. But, as the upweUing radiance we intend to measure is

polarized,I,_willnever be It.



In order to study the effectof the polarizationsensitivityofthe instrument,we need to know

only three elements,Mtt, MI_ and Mr3, in the transform matrix M. We now describe a series

of hypotheticalexperiments to determine M11, MI_ and MI_ of the instrument. First,choose a

referenceplane for the instrument,with basisvectorsi and ÷ paralleland perpendicular to this

referenceplane,respectively,and ÷ x I in the propagation directionof the beam. Then illuminate

the instrument with linearlypolarizedradiance (P = i) ofradiance10 in the followingways [here,

to conservespace,we writeI as a row vector,I --([,Q, U,V)]:

(1) with the oscillationdirection(plane)of the electricvectoralong I,so the incidentStokes

vectorisIi,_= /0(1,1,0,0),forwhich the instrument recordsa radiance li,and from Eq. (6)

with a = 0 (sinceM1t, M12 and Mls are definedon thisreferenceplane)we have

I i = (M11 + M12)I0;

(2) with the oscillationdirectionalong ÷, i.e.,I_n = I0(I,

recordsa radiance I+,

It = (Mll - Ml2)I0;

-1,0,0), for which the instrument

(3) with itsoscillationdirectionalong the linewhich bisectingthe angle between iand ÷, i.e.,

I_n = I0(I,0,1,0),forwhich the instrument recordsa radiance 15.,

If_ = (Mll + M13)Io.

From these experimental results, Mtt, Ml2 and Mr3 can be found easily:

Mtt -- Ii + It
2/0 '

M12 - I_- It
2/o '

I,;
M13 - Mt 1.

Io

Considering that Mtl can be determined during instrument calibration using an unpolarized source,

we use Mll = 1 in this paper. Upon defining qt and ut as

Qt
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Eq. (6) can be rewritten

Ut

u t = __
It '

with rnt2 and rnl3 defined by
MI2

m12 = ML----_,

mr3 = MI t

Even if I0 is unknown in the above experiment, we can still obtain the polarization sensitivity of

instrument by finding m12 and mls from the following equations

/t-/_
m12 --

/i+ I.'
2I_

m13 -- I.

2B. Polarization properties of It

To examine the influenceof the instrument polarizationsensitivity,we need to know the

polarizationcharacteristicsof the radiance exitingthe top of the atmosphere. For remote sensing

ofocean color,in generalItcan be writtenas

It = I, + I_ + I.o + tI,,, , (s)

where I, isthe contributionfrom the Rayleigh scattering,Ia isthe contributionfrom the aerosol

scattering,Iv,,is the contributionfrom the interactionbetween molecular and aerosolscattering,

tlw isthe water leavingradiancediffusedtransmitted(t)to the top of the atmosphere. This yields

It = I_+ I4 + Lo + tI,_.

The water-leavingcomponent tI_ isat most (inthe blue) -,,10% of the totalIe,and considering

the incidentlightfieldon the top of the atmosphere from the sun is completely unpolarized,

the polarizationstateof It ismainly governed by the atmospheric scatteringcontribution. For
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Rayleigh scattering, its polarization state is well known and easy to determine. But for aerosols,

their scattering properties, and the polarization state of the scattered light, are generally unknown,

as they strongly depend on their particle size distributions and refractive indexes.

Consider a spherical coordinate system with origin at the TOA, z axis directed downward, and

z axis directed away from the sun (sun's rays are in the z-z plane). Let the direction of propagation

of a photon be specified by the polar and azimuth angles, 0 and ¢, in this system. The solar beam

has 0 = 80 and ¢ = 0. Photons exiting the TOA have 8 > 90 °. Using r to represent the optical

depth measured from the TOA, the propagation of I at a wavelength A is governed by the vector

radiative transfer equation (VRTE)

0dI(A,r, 0, ¢)
- -I(A,r, 0,¢)+w0 f4, R(ct)P(A,r, 8',¢'--. 0, _b)R'(a')I(A, r, 0',¢')dfl', (9)cos dr

where P is the phase matrix, and R is the rotation matrix. As mentioned in Subsection 2A, the

reference plane for I is defined by the direction of propagation and the z axis, i.e., the reference

plane is perpendicular to the ocean surface. It should be noted that there are two rotations among

three reference planes whenever a scattering occurs, t° since the phase matrix is defined on the

scattering plane (determined by the incident light and the scattered light). One must first rotate

the incident reference plane to the scattering plane, then apply phase matrix P, and finally, rotate

the scattering plane to the scattered reference plane. The boundary condition at the top of the

o  (cosO-cosOo)6(¢- 4o), Oo< =/2.o
0

atmosphere is

The boundary condition at the (assumed flat) sea surface is given by

I(rt ; 0,., ¢,.) = F(0i)I(rt ; 0i, ¢i),

where the Fresnel reflection Mueller matrix F is

(lo)

with 8_ = = - 8i and ¢, = $i. The factors p:i:(Si) and pss(0i) are given by

[( )']1 cosÜ,- V/n ' - sin'0i_' sin'Si- cos0, v/n ' - sin'0, + 1
.cosO,T ,/... sin'0,/ sin'O,TcosO,,/.' sin'O, '

[ p+(Oi) p-(Oi) 0 i )F(0i) = [P-_Oi) P+(Oi) 0o ps3(o,) ' (11)
x 0 0 0 P33(0i)



( )'(sin_e, sin'e,)
p_3(e,): cose, - _/_: - sin2e, - cos0,,/,,2 -

cose,+ e, cos0,v   sin'
The aerosol scattering phase matrix has the following form for spherical particles:

Pll P12 0 0 )
p:(®) = Pi2 P11 0 0

0 0 P3s P34 ' (12)

0 0 -P_ P3s

where Pit, P12, P3s and P34 are functions of the scattering angle O. For the aerosol models used in

this study, the phase matrices are computed by using the Mie theory. The Rayleigh phase matrix,

Pr, is

1 + cos 2 0 - sin 2 0 0 0 \P,(O)= 3 -sin 20 l+cos 20 0 0 ) (13)16a" 0 0 2 cos O 0 '

0 0 0 2cos®

where 0 isthe scatteringangle.Note that the depolarizationfactor14has been setto zero.

The VRTE can be solved by the Successive Order Method and the Monte-Carlo Method, in

a similar way used for solving the scalar radiative transfer equation (SRTE). However, instead of

solving a single equation in the SRTE approximation, we have to solve four coupled equations.

Although the upwellingradiance It at the TOA isnot the resultofjust singlescattering,we

gain some understanding by examining the Rayleigh and aerosolsinglescatteringcontributions

to It. From singlescatteringtheory,with the incidentlighton top of the atmosphere completely

unpolarized,the upwellingradianceexitingthe top ofthe atmosphere by directmolecularor aerosol

scattering(i.e.,without consideringthe reflectionfrom the ocean surface)isgiven by14

(I) (Vt =c_e0L_e cos0 cose0
V,

P_(o) )
Pt2(O) cos 2or

-Pt2(®)sin2a '
0

(14)

where w0 isthe singlescatteringalbedo,?'Iisthe opticalthicknessof the moleculesor aerosols,and

0 isthe scatteringangle.It can be seen that thereisno contributionto Vt from singleRayleigh

scatteringor singleaerosolscattering.Observing that thereisno Ps4 term in Rayleigh scattering

phase matrix, there isno contributionto V_ from pure Rayleigh multiple scatteringeither.The

term Vt isthe resultof multipleaerosolscattering(includingthe aerosoland Rayleigh interaction

terms) because of the existenceof element P34 in the scatteringphase matrix of aerosols,or the
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result of single scattering followed or preceeded by reflectionfrom the sea surface. Our simulation

results agree with the computations of Kattawar et al., is'is that Vt _ (V_ + V_) -,- 10-31t. This is

why we can assume V_ _ 0 in Eq. (6). It means circular polarization effects are ignored.

From Eq. (14) we can also see that, in the case of single scattering, Q and U (or the degree of

polarization) are introduced mainly because of the existence of the scattering phase matrix element

P12 for Rayleigh and aerosol scattering. Figure 1 provides P12 for Rayleigh scattering and aerosol

scattering as a function of scattering angle ®. The aerosol models used in the figure are the Shettle

and Feun 17 Maritime and Tropospheric models at 80% relative humidity, labeled as M80 and TS0

respectively. It is observed from Figure 1 that P12 for the aerosol is usually small compared to

that for Rayleigh scattering, and that this element for Rayleigh scattering is a strong function of

the scattering angle ®. In the backward directions (90 ° < O < 180°), when ® is greater than

,-_ 160 °, the PI_ elements for Rayleigh and aerosol scattering are comparable. In contrast, when

90 ° < ® _< 150 ° Rayleigh scattering has a very strong effect on the polarization state. Thus, when

single scattering dominates, the degree of polarization will be small for large scattering angle ®

(® > 160°), while when ® is less than 150 °, strong polarization effects will be encountered, caused

largely by Rayleigh scattering.

By employing the aerosol models described in Gordon and Wang, is the Stokes vector It can be

computed by solving the VRTE. Using a two-layer atmosphere model with molecules confined in

the upper layer, and aerosols confined in the lower layer, bounded by a flat Fresnel-reflecting ocean

surface, the VRTE was solved using a Monte-Carlo code to provide a pseudo radiance vector It

received by the sensor at the top of the atmosphere. The simulations we present were carried out

for the MS0 and TS0 aerosol models in three wavebands (443,765, and 865 nm), and the aerosol

optical thickness for A = 865 n.m was taken to be 0.2 [r,,(865) = 0.2].

As the error in I,, [Eq. (7)]isdetermined by qt and ut, the ratiosof Qt/It and Ut/It computed

for M80 at three wavelengths are plotted in Figure 2 as a function of the viewing angle of the

sensor, 0v - _"- #, for ¢ = 90 °. The TS0 aerosol model yields similar curves. It should be noted

that Ut changes sign on crossing the principal plane (¢ = 0). In the figure, we plot Ut for the

side of the principal plane for which itis negative. In contrast, Qt is symmetric with respect to
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reflectionacrossthe principalplane.These computations show that (I)the degree of polarization,

P, generallyincreaseswith increasing80 and By; (2) P can be as largeas ,,-0.5-0.6;(3) Qt and

Ut both contributesignificantlyto P (Qt for small _v and U_ forlargeBy);and the polarization

propertiesat 765 and 865 nm are similar,but show significantlylesspolarizationthan at 443 nm.

These computations can be used to obtain a coarse estimate of the error in It induced by the

polarization sensitivity. Choose l and ÷ so that rnls = 0. Then,

Air I_ - It
=

It It
- mx,(qt cos 2a + ut sin 2a).

It is easy to show that the maximum value of (qt cos 2a % ut sin 2a) is Pl -= _ % ul. Thus

Air
-- <__rn12P_.
It

As PL can be as largeas 0.5-0.6,we seethat the errorin Itispotentiallyas largeas ,_0.5m12. For

rn12< 0.02,the errorisat most 1%. In contrastifrn12= 0.10the errorcould be as largeas 5%.

Gordon 19has shown that errorsof i% can be toleratedin atmospheric correctionas long as the

errorhas the same signthroughout the spectrum, however, errors,,_5% cannot be tolerated.

3. Effects of sensor polarization sensitivity on atmospheric correction

In the absence of strongly-absorbingaerosolsand instrumentpolarizationsensitivity,the Gor-

don and Wang atmospheric correctionalgorithm works well.19 The errorin the retrievedwater-

leaving reflectance at 443nm Ap(443) = t(443)Ap_,(443), where the reflectance p_, - 7rI_/Fo cos #0,

is about _ ±0.001 to ±0.002. This meets the requirements of MODIS and SeaWiFS. However, since

the instrument has a residual polarization sensitivity, and the upwelJJng radiance It we intend to

measure is polarized, we cannot be provided with the true It. Instead, we will have the biased

I,_. Therefore, it is necessary to assess the influence of polarization sensitivity on the Gordon and

Wang atmospheric correction algorithm.

We employed simulatedI_ pseudo data to study the influenceof the polarizationsensitivity

of the instrument on the performance of the Gordon and Wang atmospheric correctionalgorithm.

Briefly,Itwas computed forthe MS0 and TS0 aerosolmodels with aerosolopticalthicknessat 865
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n.m,r,(865)= 0.2.This vMue ofr,(865)issomewhat higherthan observed over regionswith a pure

maritime atmosphere,i.e.,not subjectedto anthropogenic aerosolor mineral dust transportedover

the oceans.2°-22The water-leavingradiancewas taken tobe zero.The simulationswere carriedout

for _0 = 0, 20°,40°,and 60°,both at the center,8u _-I°,and the edge,0v _-45°,of the SeaWiFS

scan with ¢ = 90°. The combination 8o = 0 and 8,,_ I° isomitted because itwould be near the

centerof the sun'sglitterpattern. These seven geometries approximately cover the fullrange of

sun-view geometriesencountered in progressingalong a polar orbitfrom the equator to a latitude

of 60° at the equinox.

The StokesvectorIewas then introducedintoEq. (7)and I,_computed given the polarization

sensitivityof the sensor. A rotationof the referenceplane used to definern12 and rat3 does not

change x/rn_ + m_s ,itonly reaUocatespolarizationsensitivitybetween rn12and mls, i.e.,itsimply

changes the definitionof the angle c_.Thus, for simplicitywe set rn13equal to zero,and present

the resultsofour study as a functionof a.

The Gordon and Wang algorithmIsuses the SeaWiFS bands at 765 and 865 nm (where p_ =

0, except in turbid coastalwater) to provide atmospheric correctionfor the visible.Here, we

examine the errorin the water-leavingreflectance,tAp_ -- Ap, at 443 rim. To demonstrate the

effectof the polarizationsensitivity,we examined sixsetsof valuesof rn1_in the three wavebands

443, 765 and 865 nm. The six sets of rn12 [written (rn12(443), rnl2(765), m12(865))] were rnx2 =

(0.10, 0.10, 0.10), rn__ = (0.05, 0.05, 0.05), ml2 = (0.05, 0.03, 0.03), ml, = (0.02, 0.02, 0.02), ml, =

(0.05,-0.05,-0.05), and m_2 = (0.02,-0.02,-0.02). As mentioned above rex3 = (0,0,0) for

each set. Note that setting rn13 to zero at all three wavebands, implies that when the plane of

polarization of radiation (of constant radiance) entering the sensor is rotated through 360 ° , the

sinusoidal responses (in 2x the rotation angle) of the detectors for the three bands will be either

in phase or exactly out of phase with each other. This is not a necessity for the development we

present, it is used only to simplify the analysis.

Sample resultsforthe errorsin the retrievedwater-leavingreflectanceat 443 nm axe presented

in Figure 3,forviewing at the scan edge with _b= 90°,as a functionof a. For thisfixed viewing

geometry, a would be constant;however here, varying a is identicalto varying the fractionof
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the polarizationsensitivity allocatedto rn1_ and mls. The solidlineconnecting the soliddots

on the figureprovides the errorin tp_,in the absence of polarizationsensitivity,i.e.,the result

of operating the algorithm with the correctinput,It not I,_.The simulationresultsin Figure 3

suggestthat (I)largeinstrument rn12causeslargeerrorswhen polarizationstateisconsidered;(2)

forrnt2as smallas 0.02, the polarizationsensitivityeffectsare not a problem in most sun-viewing

geometries (error< ±0.002) as long as the m_2 has the same signin allband; (3) retrievalerrors

form12 --(0.05,0.05,0.05)are about same as that formr2 --(0.05,0.03,0.03),and retrievalerrors

for m12 = (0.05,-0.05,-0.05)are about same as that forrn_ = (0.i0,0.10,0.10),suggestingthat

when the rn12'sare wavelength dependent, the retrievalerrorsare largerthan that when they are

wavelength independent.

Itisclearthatthe performance ofthe Gordon and Wang algorithmisdegraded inthe presence

of sensorpolarizationsensitivity.Thus, a method to remove the errorsinduced by the instrument

polarizationsensitivityisrequired.

4. Removal of instrument polarization sensitivity

To completely remove the instrumentpolarizationsensitivity,the polarizationpropertiesof the

upweUing radiance vectorIt are needed. As aerosolscatteringishighly variable,measuring only

the upweUing radianceItcan not provideany informationregardingitspolarizationcharacteristics.

Fortunately,the polarizationstateof the upwellingradiance It ismainly determined by Rayleigh

scattering(FigureI).Figure 4 providesa comparison ofQ/I and U/I between Rayleigh scattering

(without aerosols)and totalscattering(Rayleighplus aerosols)for 0o -- 60°. Associated with

Q/I and U/I, the subscript"r" refersto Rayleigh scatteringand "t"for totalscattering.Figure4

shows that,generallyin the blueQ,,/I,isclosetoQt/It,and U_//. iscloseto Ut/[t,with !Q,/I,[>

IQt/Itland [U,/I_I> JUt�It[.This can be explainedas the aerosol-scatteringcontributionto Qt

and Ut isgenerallysmallerthan itscontributionto It,which means the existenceof the aerosol

reduces the degree of polarization,due to pure Rayleigh scattering,in the upwelling radiance

vectorIt. For the short wavelength (Figure 4a),the Rayleigh scatteringdominates, and there is

littledifferencebetween Q_/I_ and Qt/Ie,and between U_/I, and Ut/It.For the long wavelengths,
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aerosolscatteringsignificantlyreducesthe degreeof polarizationofthe upweUing radiance.

Observing that a significantportionof qt and ut iscontributedby Rayleigh scattering,and

noting that the Rayleigh scatteringpropertiesof the airare wellknown, we would expect that a

significantamount of the polarization-inducederrorin tp_(443) could be removed by replacingqt

and ut in Eq. (7) by theirRayleigh-scatteringcounterparts,Q_/I, and U,/I_. When q. closeto

qt and u, closeto ut, the correctedradiance should be closeto the true radiance It. Using the

upweUing radianceat the top of the atmosphere correctedinthismanner, insteadof the biasedIn,

we appliedGordon and Wang atmospheric correctionalgorithm to the same pseudo data used in

Figure 3. The retrievederrorsin water-leavingreflectanceat 443 nm are presentedin Figure 5. It

can be observed from the simulationsthat: (1)generally,the polarizationcorrectionworks better

for smallerm12; (2) when ml_ isnot dependent on wavelength,itworks very well,even for m1_

as largeas (0.1,0.1,0.1);(3) when rn1_isdependent on wavelength,itdoes not work as wellas

in (1);(4)when valuesof mr2 have differentsignsin differentwavebands, even for rn12as small as

2%, itcannot perform well(Figures5e and 5f).Similarresultswere obtained for the TS0 aerosol

model with r_ = 0.2,although the residualerrorin tp_ was larger.For the purpose ofremoving the

effectsof polarizationsensitivity,these simulationsshow the importance of designinginstruments

for which rn1__does not depend significantlyon wavelength.

We have triedto improve on thispolarization-sensitivitycorrectionby accounting for the

presence of aerosols,which cause the differencebetween the q,-u, pairand the qt-utpair (Figure

4). However, as the polarizationpropertiesof the aerosolcannot be known prior to atmospheric

correction,some assumption must be made in thisregard. Figure I suggests that a reasonable

assumption would be that aerosolsinglescatteringcompletely depolarizesincidentradiance,i.e.,

that the only nonzero element of Pa(®) isat the top leftof the matrix. In the single-scattering

approximation to the TOA radiance,thiswould correspond to replacingthe actual qt by Q_/It

and ut by U,/It. Such a replacementwould effecta first-ordercorrectionforthe depolarizationby

aerosols.As Itisunknown, we triedreplacingItby I,_,the radiance measured without regard for

the polarizationsensitivity,i.e.,inEq. (7)we replacedqtand ut by Q_/I,_ and U,/I,,_,respectively.

The resultswere disappointing,there was no improvement in the polarizationcorrection,and in
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manycasesthe erroraftercorrectionwas largerthan thatshown in Figure 5 (but lessthan that in

Figure 3). Thus, we rejectedthismethod in favorof replacingqt and ut in Eq. (7) by q, and u_,

respectively.

5. Concluding remarks

We have presented simulationsdemonstrating the effectof sensorpolarizationsensitivityon

the atmospheric correctionof ocean colorsensors(Figure 3). In addition,we provided a simple

method -- substitutingthe for polarizationpropertiesof It those of a pure Rayleigh-scattering

atmosphere -- forpartiallycorrectingthe errorinduced by polarizationsensitivity.This correction

method was shown to be effective(evenforrelativelylargepolarizationsensitivities)as long as the

polarizationsensitivityof the instrument does not vary stronglyfrom band to band (Figures5a-d).

An attractivefeatureofthispolarizationcorrectionisthe simplicityofitsimplementation as partof

the overallatmospheric correctionalgorithm.The possibleerrorin the retrievedvaluesoftp_,with

out polarizationcorrection(Figure3),underscoresthe importance of a complete characterization

of the polarizationsensitivityof an ocean-colorsensor priorto launch so that the polarization-

sensitivitycorrectioncan be applied.
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Figure Captions

Figure 1. Scattering phase matrix element P12 for aerosols at 443,765 and 865 n.m, and Rayleigh

(solid line): (a) M80 aerosol model; (b) T80 aerosol model.

Figure 2. RatiosQt/It and U_/le as a functionof 8v forthe M80 aerosolmodel with _b= 90°: (a)

00 = 20°;(b)Oo = 60°.

Figure 3. Retrieved error tap,,,at 443 nm as a functionof 00 for the M80 aerosolmodel with

r,.(865)= 0.2,in the presence of polarizationsensitivity,for viewing at the edge of the scan

with (a) m12 = (0.10,0.10,0.10);(b) m1_ = (0.05,0.05,0.05);(c) m12 = (0.05,0.03,0.03);(d)

rn12 = (0.02, 0.02, 0.02); (e) m1_ = (0.05,-0.05,-0.05); (f) m,2 = (0.02,-0.02,-0.02).

Figure4. RatiosQ/I and U/I forRayleigh scatteringand totalscatteringas a functionofviewing

zenith angle 0v for the M80 aerosol model with %(865) = 0.2 and 00 = 60°: (a) A = 443 nm; (b)

A = 765 nm; (c) A = 865 rim.

Figure 5 Retrieved error tApw at 443 nm as a function of 00 for the M80 aerosol model with

r=(865) = 0.2, after applying the removal algorithm, for viewing at the edge of the scan with

(a) ml__ = (0.10,0.10, 0.10); (b) ml, = (0.05, 0.05, 0.05); (c) rnt, = (0.05, 0.03,0.03); (d) rnl, =

(0.02, 0.02, 0.02); (e) ml_ = (0.05,-0.05,-0.05); (f) ml2 = (0.02,-0.02,-0.02).
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Figure 5 Retrieved error tApt, at 443 am as a function of 00 for the M80 aerosol model with

v=(865) = 0.2, after applying the removal algorithm, for viewing at the edge of the scan with
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(0.02, 0.02, 0.02); (e) _ = (0.05,-0.05,-0.05); (f) ,m_ : (0.02,-0.02,-0.02).


